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 a b s t r a c t

The automatic cell segmentation and classification from whole slide images plays an important role in digital 
pathology, unlocking new opportunities for biomarker discovery. Despite extensive research, this task faces per-
sistent challenges such as the differentiation of epithelial cells into normal and malignant. Many existing models 
lack reporting of epithelial subtyping, and when available, their performance is often suboptimal. This work 
benchmarks state-of-the-art methods to highlight this limitation and introduces GrEp, a geometric deep learning 
strategy that considers the broader epithelium tissue architecture to infer cell-level classification rather than 
relying exclusively on nuclei morphology. The proposed graph-based workflow significantly outperformed state-
of-the-art nuclei classification models in colorectal cancer and generalized effectively to two unseen tissue types, 
endometrium and pancreas, proving the robustness of the geometry-based model. Given its speed and accuracy, 
we believe GrEp to be a valuable method to refine epithelial cell classification for downstream analyses in clinical 
and research settings.

1.  Introduction

Transformation towards Digital Pathology (DP) opens the field to 
new opportunities for biomarker discovery and automated clinical ap-
plications through the development of Deep Learning (DL) methods. 
These techniques also offer unprecedented possibilities in analyzing 
large cohorts of scanned histopathology slides, named whole slide im-
ages (WSIs). As personalized medicine advances, the need to charac-
terize tumor composition and understand spatial histological features 
becomes crucial [1].

In this context, automatic cell segmentation and classification from 
colorectal cancer (CRC) haematoxylin and eosin (H&E) images has been 
extensively studied in recent years, leveraging the H&E staining prop-
erties that highlights nuclei in purple blue color and other cytoplas-
mic and extracellular components in pink [2]. Yet, this task is not 
considered fully resolved [3]. For example, most models either con-
tain a single epithelial class without differentiating normal from ma-
lignant epithelial cells, or underperform in this differentiation, often
misclassifying normal as malignant. However this distinction is clini-
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cally important as pathology scoring guidelines are based on the report-
ing of features associated to malignant epithelium such as the extent 
of tumor invasion, tumor grade, and tumor budding [4]. The incorrect 
identification of normal epithelial cells as malignant would thus induce 
an important bias in automated settings. The challenge of accurately 
differentiating normal and malignant cells arises due to the important 
intraclass heterogeneity in malignant nuclei regarding size, shape, and 
morphology as can be seen in Fig. 2. Moreover, the colonic epithelium 
includes various epithelial cells (goblet cells, enterocytes, paneth cells, 
tuft cells, enteroendocrine cells, and microfold cells), further complicat-
ing the classification [5]. Despite this complexity, on a larger scale, the 
epithelium tissue covering the colonic tract is very well organized. It is 
composed of a single-layer columnar epithelium that forms crypts. This 
simple tissue organization is gradually lost as the stem cells, located at 
the crypt base, accumulate mutations and begin to over-proliferate and 
malignant epithelial masses begin to form [6]. The tissue-level changes 
can be readily identified and are among the key indicators assessed 
by pathologists to diagnose malignancies. Based on this biological phe-
nomenon, we propose in this work an epithelial nuclei classification
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refinement method, using epithelial cell-graphs to capture both local cell 
features and global tissue structure, emulating pathologists’ decision-
making. Graph representations of healthy and malignant regions are 
expected to reflect highly diverse structures that should be easy to clas-
sify. Interestingly, throughout cancerization, most tissues feature similar 
epithelial reorganization processes from non-neoplastic to adenocarci-
noma. Under this hypothesis, the developed approach was expected to 
be easily expanded to other adenocarcinoma types [7]. To evaluate this, 
the model was applied and finetuned to endometrium and pancreatic 
tissues.

The main contributions of this work are:

1. We propose a Graph-based Epithelial (GrEp) workflow for epithelial 
cell sub-classification refinement between normal and malignant for 
conventional cell classification methods.

2. The proposed GrEp model was compared with other state-of-the-art 
models and significantly improved the epithelial sub-classification.

3. GrEp demonstrated to be over 4X faster than existing methods for 
refining epithelial cell classification as post-processing step.

4. The model was extended to two other tissue types (endometrium 
and pancreas), highlighting the generalizability of the proposed ap-
proach to new tissues.

5. Datasets, model weights and code are available on GitHub.1

2.  Related work

2.1.  Graph-based approaches in biomedical pattern recognition

Graph-based approaches and graph neural networks (GNN) have 
gained large popularity in biomedical applications to represent and 
learn from structured data such as proteins [8], drug design [9], gene 
interactions [10] but also in histopathology medical imaging to model 
tissues as networks of cells [11]. The capacity of such methods to cap-
ture spatial relationship and cellular interactions between histology ele-
ments emulate how pathologists work and allow to extract features that 
are crucial for diagnosis [12]. In the field of computational pathology, 
multiple groups have developed graph neural networks for gland clas-
sification [13], prediction of cancer subtype [14], cancer grade [15] or 
mutations [16]. As most of these methods take advantage of cell-based 
graphs, the initial cell detection and classification of cells must be per-
formed beforehand.

2.2.  Nuclei detection and classification

The literature encompasses a diverse array of DL approaches dedi-
cated to nuclei detection and classification.

HoVer-Net [17] was the first method of this kind. It consists of a 
shared encoder with three decoder branches to simultaneously tackle 
semantic nuclei instance segmentation and nuclei separation using 
vertical-and-horizontal distance maps. HoVer-Net remains a state-of-
the-art (SOTA) in the field, with some variations proposed over time 
by introducing modern Vision Transformer encoders [18] or reducing 
its high computational cost [19].

Chen et al.[20] predict the instance boundary mask for object separa-
tion. Ilyas and colleagues [21] build on this idea, adding a bidirectional 
feature fusion strategy to the backbone to encourage better cross-scale 
deep representation, which is especially important in DP.

StarDIST [22], another well-established cell segmentation method, 
predicts centroid probability and distance-to-boundary maps. The model 
was later extended for classification [23]. StarDIST inspired Chen et 
al. [24] to leverage contextual information from sampled points within 
centroid pixels and employ a shape-aware perceptual loss.

Recent AI progress has been fueled by foundation models like the 
Segment Anything Model (SAM) [25], which have achieved remarkable 

1 https://github.com/digitalpathologybern/GrEp/

performance at zero-shot learning [26]. Multiple groups have adopted 
it for nuclei segmentation and classification, with or without strategies 
to employ the promptable properties of SAM [18,27].

Abousamra et al. [28] utilized point annotations to create a dilated 
nucleus centroid mask. They leverage the cellular spatial configuration 
for the classification task by predicting Ripley’s K function, as a measure 
of cell clustering.

Other methods use detection transformers, which avoid post-
processing to predict the nuclei bounding-boxes [29]. Zhang and col-
leagues estimate nuclei radii for circular object prediction [30]. Huang 
et al. infer centroid position instead [31]. They introduce a complex 
adaptive transformer that employs learnable affine transformations for 
data augmentation and uses two networks for self-distillation. Huang 
and colleagues developed another model with a single network trained 
in two stages [32]. The first fine-tunes the encoder to H&E data. Then, 
the encoder is frozen, while learnable grouping prompts are incorporated 
into the input to guide the classification by clustering similar cell em-
beddings.

2.3.  Nuclei classification using GNNs

Although most deep learning methods for cell classification rely on 
convolutional neural networks, some authors have already embarked on 
integrating topological insights with Graph Neural Networks (GNNs) for 
nuclei classification with the idea of leveraging spatial relationship to 
increase classification performance.

Hassan and colleagues used message passing network to identify cell 
communities [33]. All detected cells in given patches acted as nodes, 
connected to their nearest neighbors using Euclidean distance. Through 
message passing layers, edge weights were updated. Inter-community 
edges were pruned, resulting in a set of community graphs. Each com-
munity was finally classified using deep neural network. Their experi-
ments showed improvement over HoVer-Net and MaskR-CNN.

Lou et al. presented SENUCLS, which combines a semantic segmen-
tation block trained alongside a GNN that serves as a feature extractor 
for vertex and edge embeddings [34]. Node embeddings are enriched 
by concatenating deep (from a recurrent neural network) and manual 
shape descriptors of the nuclei mask. Their results are promising with-
out the label forcing of cell communities from the work of Hassan et 
al.[33], but the feature extraction strategy significantly increases the 
computational complexity of the model. Recently, the authors have ex-
panded their SENUCLS approach by adding a transformer module that 
uses nodes and edges as input tokens, enabling the model for global 
information exchange across the graph differing from immediate neigh-
bors [35].

In contrast, our work proposes a fully automated node feature extrac-
tion and classification method for epithelial cell differentiation. Unlike 
other approaches designed to classify multiple cell types, the proposed 
GrEp workflow concentrates on the task of epithelial cell subclassifi-
cation. This strategy allows the model to effectively learn epithelial-
specific attributes and to distinguish subtle features useful to accurately 
differentiate normal from malignant cells. This focused approach re-
duces the complexity of multiclass classification while specializing for 
a specific task, resulting in increased performance. The model can be 
readily applied as post-processing of any nuclei detection/segmentation 
and classification method and without relying on previous features to 
infer epithelial differentiation.

3.  Methods

3.1.  Graph neural networks

Graph neural networks use convolutions on the nodes of a graph 
to learn new node representations. As graphs can be described by their
adjacency matrix 𝐴 and their node feature matrix 𝐻 , graph convolutions 
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rely on the multiplication of these two matrices which result in the ag-
gregation of the neighboring node features. In order to weight individual 
features differently, a weight matrix 𝑊  is included in the matrix mul-
tiplication process. Based on this principle, multiple message passing 
(MP) aggregation strategies have been proposed. The most common MP 
layers include GCN [36], GraphSage [37], GIN [38], and GAT [39] and 
are described below. Although these MP layers rely on the aggregation 
of features from neighboring nodes to learn new node representations, 
they all differ slightly in their aggregation strategy.

While GCN aggregates neighbor’s nodes’ features via mean function 
and normalizes it according to node degree (using the degree matrix 𝐷) 
as:

𝐻 (𝑙+1) = 𝜎
(

𝐷̃− 1
2 𝐴̃𝐷̃− 1

2𝐻 (𝑙)𝑊 (𝑙)
)

(1)

GraphSage concatenates a node’s own features with the previously av-
eraged features from its neighbors:

𝒉(𝑙+1)𝑖 = 𝜎
(

𝑾 (𝑙) ⋅ CONCAT(𝒉(𝑙)𝑖 ,AGGR(𝒉(𝑙)𝑢 ,∀𝑢 ∈ 𝑁(𝑖)))
)

(2)

Using this concatenation strategy, GraphSage preserves the features 
from the node of interest while aggregating the information from neigh-
bors. Following the same idea, GIN proposed a new learnable parameter 
(𝜖) to adjust the weight of the self node to preserve its identity:

𝒉(𝑙+1)𝑖 = MLP

(

(

1 + 𝜖(𝑙)
)

⋅ 𝒉(𝑙)𝑖 +
∑

∀𝑢∈𝑁(𝑖)
𝒉(𝑙)𝑢

)

(3)

After node feature aggregation a multi-layer perceptron (MLP) is applied 
to produce distinctive neighborhood features for different communities.

Finally, GAT introduced an attention mechanism to learn relative 
weights for each node-node connection:

𝒉(𝑙+1)𝑖 = 𝜎

(

∑

𝑗∈𝑁(𝑖)
𝛼𝑖𝑗𝑾 𝒉(𝑙)𝑗

)

(4)

Different from GAT, the other three message passing layers weight all 
neighbors with equal importance. Each MP layer has thus its own speci-
ficity and finding GNN architecture can be challenging and depends on 
the task [40].

After the MP layers, the newly computed node embeddings are usu-
ally passed through linear layers for final node classification.

3.2.  Proposed graph-based epithelial cell classification method (GrEp)

Multiple models have been developed for cell segmentation/detec-
tion and classification in CRC H&E images. These models show great 
performance for epithelial cell detection and are used here as first step 
to retrieve epithelial cell centroids. As illustrated in Fig. 1, the proposed 
Graph-based epithelial cell classification workflow consists of the fol-
lowing three main steps:

(A) Epithelial nuclei feature extraction
Regions of 128 × 128px (64 × 64µm) were cropped around pre-
viously detected epithelial centroids. This large crop size has 
previously been shown to improve nuclei classification by preserv-
ing neighborhood information [41]. Then, to direct the model’s 
attention to the central cell, a gamma-focus transformation was 
applied to enhance the contrast in the tile center (64 × 64px), thus 
highlighting the epithelial nucleus of interest. Conversely, the 

Fig. 1. Overview of the proposed epithelial sub-classification graph-based model pipeline. Starting with a set of detected epithelial cells, the framework consists 
of: (A) Epithelial nuclei feature extraction using a pretrained ResNet18 from GammaFocus augmented nucleus tiles; (B) Epithelial graph construction using the 
previously detected epithelial centroids as nodes, the extracted ResNet18 vectors as node embeddings and Delaunay triangulation as edges. The graph is passed 
through Message Passing (MP) layers for node classification; (C) Epithelial glands are clustered using short Delaunay edges to capture individual glands into single 
subgraphs on which a Median Filter (MF) is applied to get the final nucleus class. For implementation of the method, a detailed pseudocode is presented in the 
supplementary material.
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contrast of the surrounding region was decreased to minimize the 
amount of information from neighboring cells [41]. An augmented 
nucleus tile can be seen in Fig. 1.A. ResNet18 [42] was trained 
with gamma-augmented nuclei crops for normal versus malignant 
binary classification. Deep morphology-related nuclear features 
were extracted using its last hidden layer vector.

(B) Graph-based node classification
For each tile, an undirected epithelial cell-based graph was defined 
as 𝐺 = (𝑉 ,𝐸), where epithelial nucleus in a tile acted as a node, 
forming the set 𝑉 . Previously extracted nuclei embeddings from 
ResNet18 were attached to each node as features. Nearby nodes 
were then connected using the Delaunay triangulation [43], 
forming the set of edges 𝐸. Delaunay triangulation was selected for 
its ability to represent cell interactions and reflect how tissue orga-
nization changes with malignancy [44]. Edges above a determined 
length were removed to prevent interactions between distant 
nuclei that are unlikely to be related. Since the aim of the graph 
is to capture the overall epithelium structure, the edge thresholds 
were set above 100px (50µm) to ensure that connections span 
beyond immediate neighbors. As detailed in Section 3.3, different 
edge thresholds were evaluated during the model optimization 
process. Graph neural networks were trained and optimized for the 
specific task of node classification (epithelial cell differentiation) 
as detailed in Section 3.3. Finally, the optimal GNN was applied 
to the epithelial cell graph to predict the labels of the nodes (nuclei).

(C) Post-processing
A final post-processing step was applied to smooth the predictions 
from the graph-based model within individual glands. A very short 
Delaunay threshold of 40px (20µm) was used to cluster epithelial 
cells into single glands, over which a Median Filter (MF) was ap-
plied. The 20µm threshold was selected to effectively cluster indi-
vidual normal glands into single entities, as the average distance 
between two normal epithelial cells ranged from 9 to 17µm in the 
training dataset. Supplementary Fig. 2 illustrates different cluster-
ing values across normal and malignant tissue regions. The edge 
length must be sufficient to capture all epithelial cells within a gland 
but short enough to prevent merging adjacent glands. This is partic-
ularly relevant when normal and malignant glands are in close prox-
imity to prevent their clustering. This final post-processing step re-
sulted in homogeneous predictions in each epithelial gland or clus-
ter.

3.3.  Implementation details

The GrEp workflow was implemented using PyTorch and PyTorch 
Geometric libraries [45,46]. An AdaptiveAvgPool2d and a Linear layer 
were added to ImageNet pretrained ResNet18 to adapt for binary clas-
sification. ResNet18 was trained on the nuclei crops extracted from the 
three folds of the Lizard dataset. In order to account for stain varia-
tions in histopathology and increase model generalization, nuclei crops 
were augmented for color variations (ColorJitter) and standard image 
augmentation (rotations, vertical/horizontal flips) [47]. Finally, the GF 
augmentation was applied with gamma values of 0.5 and 1.5. ResNet18 
was trained for 150 epochs with the AdamW optimizer and a learn-
ing rate of 1e−6 on an NVIDIA GTX1080 GPU. For endometrium and 
pancreas tissues, the ResNet18 trained on CRC was finetuned for 100 
epochs.

When training the GNN models, different graph structures and model 
architectures were explored to find the best composition. The four MP 
layers described in Section 3.1 were evaluated and optimized using 
the open-source python library HyperOpt [48]. For each MP type, the 
optimization process tested 100 combinations of hyperparameters us-
ing the 3-fold cross-validation (CV) from the Lizard dataset (described 
in Section 4.1). The parameters optimized for each MP type included 

the number and depth of MP layers, as well as learning rate, learning 
rate decay, weight decay, and step size, the definition of the search 
space can be found in Supplementary Table 1. The optimization pro-
cedure was repeated for different graph structures to also determine 
the optimal edge length (Delaunay triangulation threshold set at: 100, 
150, 200, 250 and 300px) and node embedding strategy (ResNet18 
embedding or its concatenation with zero-mean normalized node po-
sition (x,y) and class prediction). MP layers were followed by 3 fully 
connected (FC) layers. All graph models were trained on an NVIDIA 
RTX4090 GPU for 150 epochs with the AdamW optimizer [49], binary 
cross-entropy loss, LeakyRelu activation function, and dropout (p=0.5) 
layers in between MP and FC layers. To prevent overfitting, trainings 
and finetunings were stopped when reaching the smallest validation
loss.

3.4.  Baselines evaluation of the proposed model

In evaluating our cell classification model, we present three sets of 
baselines. The first, a Random Forest (RF) model, set a performance 
threshold that relied on quantitative features extracted from nuclei mask 
annotations or, when unavailable, the masks produced by the Cerberus 
model [50]. The feature vector consisted of a total of 83 uncorrelated 
features that could be categorized as shape, texture, color, spatial ar-
rangement, cell-graph-based, and chromatin distribution [51] descrip-
tors. In this case, the task was simplified to a binary classification prob-
lem (normal versus malignant).

The second allows benchmarking against current SOTA cell detec-
tion and classification models: HoVer-Net [17], MCSpatNet [28], and 
PGT [32]. SENUCLS [34] was chosen as the baseline for instance classi-
fication refinement using a GNN. The models were retrained using the 
3-fold CV from the Lizard dataset to ensure fair comparison. To stabi-
lize training, a minor modification was made to MCSpatNet by incor-
porating a background channel into the centroid segmentation branch. 
HoVer-Net, MCSpatNet, and PGT detected and classified cells into three 
categories: normal, malignant, and "other" (non-epithelial cells). For the 
subtyping task, SENUCLS distinguished between epithelial subclasses. 
To ensure better comparability with our method, SENUCLS was trained 
exclusively on the epithelial predictions of MCSpatNet and PGT, disre-
garding all other cell types.

The final experiments assess the potential gain of using GrEp as post-
processing to existing cell detection and classification models pretained 
on separate datasets. To this end, the originally published weights of 
HoVer-Net, HoVer-Next [19], CellViT [18], MCSpatNet, and Cerberus 
[52] were downloaded and the models were applied to the test set both 
without and with GrEp.

3.5.  Evaluation metrics

In the context of this study, GNN methods operate as a classification 
post-processing. Since they cannot influence the detection performance, 
the assessment of detection and sub-classification tasks is conducted in-
dependently.

First, for the detection task and in accordance with the literature 
[53], a predicted cell instance was considered a True Positive (TP) 
if it was found within the area defined by a radius of 3µm (6px at 
20×) around the closest nuclear center of the Ground Truth (GT). An 
unmatched prediction was a False Positive (FPu), while a missed GT 
cell was considered a False Negative (FNu). The detection F1-score 
was calculated globally for all cell types (Fd), where the score is
given by Eq. 5.

Fd = TP
TP + 0.5 × (FPu + FNu)

(5)

The classification task only used the matching epithelial predictions 
with the epithelial Ground Truth (GT) annotations. The classification 
F1-score (F𝑡c, see Eq. 6) was used to answer whether the models are able 
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to discern the epithelial subtypes. Here, the FNtm and FPtm denote wrong 
classification for matching epithelial cell predictions. The weighted F1-
score (Fec) is also calculated. All the metrics are reported at the dataset 
level.

Ftc =
TPt

TPt + 0.5 × (FPtm + FNtm)
(6)

4.  Datasets

The datasets used consist of crops from H&E WSIs of different origin 
and sizes acquired at a magnification of 20× (∼ 0.5µm/pixel). Example 
tiles are displayed in Fig. 2 and the specificities of dataset partitions 
can be seen in Table 1. Fig. 2 also presents nuclei crops from normal 
and malignant epithelial cells to highlight the intra-class heterogeneity 
and inter-class resemblances, motivating the use of larger contextual 
features to classify single nuclei.

4.1.  Colorectal cancer (CRC)

The Lizard dataset introduced by Graham et al. [54] was used to 
train CRC models. The lack of subtyping for epithelial cells led to the 
selection of a subset of 148 tiles, so each tile clearly only contained either 
malignant or normal epithelial cells. The PanNuke subset from Lizard 
was kept aside for testing. The original 3-folds from Lizard were used 
to train the models and ensure dataset independence between the folds. 
Additionally, 19 new tiles from TCGA were annotated and added as sec-
ond independent test set. These tiles were selected to display a variety 
of epithelial gland morphologies and staining intensities and thus rep-
resent a realistic data distribution. Out of these 19 tiles, 5 contained a 
mixture of normal and malignant epithelium tissue. These regions were 
specifically selected to observe the graph-based model performance in 
regions where both epithelial types are found in close proximity.

4.2.  Endometrial cancer

Eighty-five tiles (1000 × 1000px) were extracted from an institutional 
cohort to contain either normal or malignant epithelium. All epithelial 
nuclei were annotated at their centroid location as normal or malignant. 
Tiles were divided into train, validation and test sets according to patient 
stratification, ensuring that data originating from one patient would be 
found in a single partition.

Table 1 
Dataset Description. For each tissue type, the number of tiles and total 
number of cells are given. N: Normal, M: Malignant, P:Pancreatitis, Mix: 
Mixture of normal and malignant cells on the same tile.
 Tissue type  Dataset  Epithelial subtype  #tiles  #cells

CRC

Train (Lizard)  N  52  55,665
 M  96  106,823

Test (PanNuke)  N  7  2724
 M  10  2822

Test(TCGA)
 N  7  6782
 M  7  9502
 Mix  5  8812

Endometrium

Train
 N  9  5289
 M  6  5062

Validation
 N  10  4124
 M  10  13,864

Test
 N  33  13,139
 M  17  18,174

PDAC

Train
 N  7  7926
 M  14  3784

Validation
 N  6  5415
 M  6  3939

Test
 N  7  6725
 M  10  4484
 P  6  3986

4.3.  Pancreatic ductal adenocarcinoma (PDAC)

Fifty-six tiles (1000 × 1000px) from an internal PDAC WSIs cohort 
were extracted and their cell nuclei annotated following the same strat-
egy as for CRC and endometrium. The PDAC cohort contained an addi-
tional tissue type: pancreatitis. Acute and chronic pancreatitis are both 
inflammatory diseases of the pancreas that can also be associated with 
PDAC. Indeed, inflammation and cancer are frequently linked, and pan-
creatitis can be found in close proximity with PDAC on WSIs. Moreover, 
despite being different diseases, pancreatitis and PDAC can be difficult 
to differentiate from a morphology point of view. Examples of normal, 
malignant, and pancreatitis tiles are shown in Fig. 2. The pancreatitis 
subtype was not used for finetuning processes. Instead, it was kept in 

Fig. 2. Dataset visualization: colorectal images in yellow, endometrium in pink and pancreas in blue. The top tiles (1000×1000px) show contextual regions where 
glands architecture can be seen. For each tissue type, two normal tiles and two malignant tiles are displayed. Normal and malignant epithelial nuclei crops are shown 
for each tissue type in the two bottom rows. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)
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the test set to evaluate how the models behave when presented with 
an unseen sub-class. In this case, given that pancreatitis originates from 
non-cancer diseases, these tiles are expected to be assigned to the nor-
mal epithelium category. As for endometrium, tiles were divided into 
training, validation and test sets based on patient-level partitioning.

5.  Results

5.1.  Model selection

For each MP layer, the model architecture, hyperparameters, and 
graph structure were selected as the HyperOpt combination that mini-
mized the loss, Supplementary Tables 2–5. Consistent over all four MP 
types, larger models performed better. The optimization results revealed 
that the best node embedding consisted of the ResNet18 embedding 
alone. The addition of node position or ResNet18 prediction was not 
helpful. In addition, longer edges performed better as the best perfor-
mances were achieved for edges 250px long. This can be explained by 
the fact that the aim of the graph-based model is to capture the overall 
tissue structure at the large scale, which can only be accomplished with 
longer edges.

Each model was then retrained, using the same folds, with the op-
timal set of parameters and hyperparameters, Supplementary Table 6. 
All 4 MP types showed very high classification performance, but the 
GCN architecture, having the smallest loss and the highest F1-score was 
selected as the best performing model. The GCN together with the post-
processing are referred to as GrEp in the rest of the paper.

Since the model optimization process converged to very large mod-
els, we were interested in evaluating the gain of using such large models 
compared to lighter architecture. The same optimization process was re-
peated while restricting the number of MP layers to be between 2 and 
4. The optimal graph structure was supposed to stay the same, for that 
reason the edge length and node embedding used were the ones found 
to be optimal for the larger models. The resulting smaller architecture 
was found to be 4 layers deep with 512 neurons. The lighter GCN ar-
chitecture with the post-processing is referred as GrEp-s (GrEp-small). 
Supplementary Table 7 shows the number of parameters for all models 
trained in this study.

5.2.  GrEp model performance and comparison with existing models

Out of the models trained on the Lizard dataset for cell detection 
and classification, MCSpatNet showed a superior performance in detec-
tion compared to HoVer-Net and PGT and was adopted as the method 
of choice for epithelial cells detection in the next experiments. Subse-
quently, graph-based methods were applied to the epithelial cells iden-
tified by MCSpatNet. According to Table 2 graph-based models (SENU-
CLS and GrEp) showed significant better performance than non-graph-
based methods on PanNuke (p<0.001, 95%CI [-0.05, -0.03], Cohen-
d: 1.88), and TCGA (MCSpatNet vs MCSpatNet + SENUCLS: p<0.01, 
95%CI [-0.15, -0.04], Cohen-d: 0.5 and MCSpatNet vs. MCSpatNet + 
GrEp: p<0.001, 95%CI [0.71, 0.82], Cohen-d: 4.7]). The RF trained 

to classify hand-crafted features extracted from nuclei masks performed 
worse than all DL-based methods, probably due to the higher adapt-
ability to data variability from DL models. This highlights the benefit 
of using DL techniques for nuclei classification tasks and motivated the 
use of ResNet18 to extract cell features. Interestingly, our proposed GrEp 
model achieved the highest average performance on both normal and 
malignant classes individually and significantly outperformed SENUCLS 
on TCGA test set (p<0.001, CI95% [0.8, 0.91], Cohen-d: 4.3).

The results can be visualized in Fig. 3. The lower detection score of 
HoVer-Net and PGT can be seen especially in high-density epithelium 
regions. Dense normal epithelial crypts were particularly challenging for 
MCSpatNet, which misclassified most of these cells as malignant. This 
effect was reverted by using graph-based methods. Notably, GrEp effec-
tively handled regions with adjacent normal and malignant tissues de-
spite its long edges, with most of the remaining misclassified cells after 
GrEp post-processing located along tile edges. This is probably an effect 
from the missing part of the neighboring epithelium tissue, degrading 
the performance.

The benefit of using GrEp as post-processing for existing nuclei clas-
sification models was then evaluated. GrEp was applied on top of the 
published weights from HoVer-Net, HoVer-NeXt, CellViT, MCSpatNet, 
and Cerberus models, Fig. 4 and Table 3. GrEp significantly improved 
the epithelial sub-classification for all the models and can add valuable 
information to models that do not assess normal versus malignant ep-
ithelium (MCSpatNet and Cerberus here).

Finally, to verify that GrEp would not be dramatically affected by 
inaccurate epithelial nuclei detections, we computed the performance 
of GrEp under perturbation. To do so, some nuclei were randomly re-
moved and some non-epithelial nuclei were randomly added from TCGA 
ground truth annotation. GrEp performance was computed on true ep-
ithelial cells only. Results show that GrEp is not affected by inaccurate 
epithelial detection and the performance decreases only for large per-
turbations (more than 50% random cell selection), Supplementary Table 
8 and Supplementary Fig. 4.

5.3.  Ablation study

The proposed method was evaluated using different variations to 
show the impact of each of its components on the performance. MCSpat-
Net was used as epithelial cell detection model and ResNet18 classifica-
tion of the detected epithelial cells acted as the baseline for comparison. 
Iteratively, each module of the proposed method was individually incor-
porated to the pipeline and evaluated, Table 4 and Supplementary Fig. 
5. One-way ANOVA revealed a significant difference in accuracy among 
the full GrEp (RN18 + GCN + MF) and ablated variants (F = 28.8, p 
= 0.0001). Post-hoc Tukey tests were performed to pairewise compare 
variants and indicated that all elements included in the full model sig-
nificantly increased the performance (p <0.05). It is important to note 
that the addition of median filtering to smooth predictions inside indi-
vidual glands on the baseline improves the score without outperform-
ing the graph-based model, showing the benefit of using MP layers be-
fore gland clustering. Importantly, MF works because graph-based node

Table 2 
Quantitative assessment of existing nuclei classification methods (Cerberus, HoVer-Net, PGT, MCSpatNet). Hand-crafted nuclei features were 
extracted from Cerberus nuclei masks followed by Random Forest (RF) classification. “-" in the Fd columns indicate that the graph-based 
methods do not change the initial epithelial cell detection and the score remains the same as without graph-based post-processing.

 PanNuke  TCGA
 Method Fd Fec  Fmc  Fnc Fd Fec  Fmc  Fnc
 Hand-crafted + RF  -  85.63  84.24  86.99  72.3  71.61  64.29  76.66
 HoVer-Net  62.26±2.02  97.31±0.09  97.81±0.10  96.30±0.36  60.50±2.29  81.41±9.46  82.84±11.50  79.13±6.59
 PGT  75.06±2.05  99.76±0.22  99.77±0.20  99.74±0.24  65.52 ±3.16  87.94±0.47  89.77±0.35  85.16±1.99
 MCSpatNet  79.32±0.38  94.32±0.96  95.41±0.6  93.14±1.40  72.02±0.61  80.84±1.75  86.69±1.28  72.14±3.24
 MCSpatNet + SENUCLS  -  100±0.0  100±0.0  100±0.0  -  90.09±1.43  90.59±1.0  89.50±2.04
 MCSpatNet + GrEp  -  100±0.0  100±0.0  100±0.0  -  97.2±0.88  97.84±0.65  96.1±1.28
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Fig. 3. Visual results on TCGA test tiles using existing cell detection and classification models (HoVer-Net, PGT and MCSpatNet) retrained for normal versus malignant 
epithelial cell classification in comparison with the ground truth. The two bottom lines present results when applying graph-based epithelial post-processing (SENUCLS 
and the proposed GrEp). Green dots highlight normal cells and red dots malignant cells. Zoomed insets with predictions are presented in Supplementary Figure 3 
with corresponding F1 score. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3 
Quantitative comparison of the epithelial classification performance be-
tween existing nuclei classification models without and with the proposed 
GrEp model. “-" in the Fd columns indicate that the graph-based methods 
do not change the initial epithelial cell detection and the score remains the 
same as without graph-based post-processing.
    Method Fd Fec  Fmc  Fnc  
  HoVer-Net  44.51  56.65  80.29  9.17  
  HoVer-Net + GrEp  -  96.82  97.7  95.07 
  HoVer-NEXT  43.62  58.98  78.64  26.51 
  HoVer-NEXT + GrEp  -  96.89  95.79  97.56 
  CellViT  56.37  67.27  82.02  41.91 
  CellViT + GrEp  -  96.48  95.09  97.28 
  MCSpatNet + GrEp  51.87  97.31  97.95  96.12 
  Cerberus + GrEp  72.33  98.05  97.46  98.43 

classification performance is already high, otherwise this approach 
might drastically reduce the overall performance. The full version of 
the proposed approach significantly outperforms all baselines and in-
termediate steps (p<0.001), demonstrating the necessity of including 
each element in the final model.

Table 4 
Ablation Study on TCGA dataset using GrEp variants. The full GrEp pipeline 
corresponds to FN18 + GCN + MF. RN18: ResNet18 node classification and 
embedding extraction, MF: Median Filter.

 GrEp elements  TCGA
 RN18  GCN  MF Fec  Fmc  Fnc
✓  -  -  87.58±0.97  90.83±0.84  82.01±1.22
✓  - ✓  90.13±1.14  92.51±1.03  86.04±1.44
✓ ✓  -  94.45 ±0.77  95.75 ±0.48  92.21±1.26
✓ ✓ ✓  97.2 ±0.88  97.84 ±0.65  96.1±1.28

The impact of using GrEp to refine cell embeddings can be seen in 
Fig. 5. A principal component analysis (PCA) was performed on the 
node embeddings at the input (ResNet18 embeddings) and output layer 
of GrEp GNN, as shown in Fig. 5A. The input node features show an 
important overlap of normal and malignant feature vectors. The same 
behaviour is observed when applying t-distributed stochastic neighbor 
embedding (t-SNE), see Supplementary Figure 6. Patches correspond-
ing to these overlapping embeddings were retrieved and displayed ei-
ther clustered normal epithelium, as can be found at the bottom of 
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Fig. 4. Visualization of GrEp as post-processing on existing pretrained cell segmentation and classification models (HoVer-Net, HoVer-NeXt, CellViT, MCSpatNet 
and Cerberus). Red dots indicate malignant cells; green dots indicate normal cells. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

healthy colonic crypts, or single-layered epithelium from malignant re-
gions. This confusion is expected at the small cell-level context. This 
uncertainty gets reverted by using GNNs. As a result, the embeddings 
are more distinctly segregated, highlighting the ability of GrEp to bet-
ter capture features specific to each epithelial subtype based on contex-
tual information rather than just nuclei features. Fig. 5.B shows GrEp’s

capability of correctly classifying normal cells in crowded crypts as well 
as more organized tumor regions.

To further investigate the node classification performed by GrEp, 
node importance were computed and visualized using GNNExplainer 
[55], Supplementary Figure 7. When selecting specific nodes that were 
initially misclassified by ResNet18 (located at the crowded bottom of 
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Fig. 5. A. Principal component analysis (PCA) on the input node embeddings (ResNet18 last hidden layer) and GrEp’s last hidden layer. Green dots indicate normal 
cells, and red dots indicate malignant cells. The black circle highlights the region where the normal and malignant embeddings from ResNet18 overlap. For each 
region in the PCA plot, representative epithelial tiles were retrieved. B. Tiles of malignant and normal epithelial cells that were misclassified by ResNet18 and 
correctly classified by GrEp. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

healthy crypts) it is interesting to see that GrEp took most advantage 
of epithelial cells located in less dense crypts regions. Similarly, when 
looking at malignant nodes, it is interesting to see that the model looks 
at cells beyond the direct neighbouring region. This emphasize the ben-
efit of using global graph modeling of the tissues to infer the proper 
epithelial cell classification.

5.4.  Inference time

The speed of the GrEp workflow was compared to SENUCLS. Both 
models were run on an Nvidia A100 GPU (80GB VRAM) and the infer-
ence times were assessed on the TCGA test set (total of 25,096 epithe-
lial cells). Our proposed model was more than 4X faster than SENU-
CLS (57 sec vs. 4min 25 sec), probably due to the more complex feature 
extraction process of SENUCLS. The feature extraction from ResNet18 
was also the most time-consuming step in the proposed GrEp pipeline, 
accounted for 81% of the inference time (46sec). The post-processing 
median filtering, on the other hand, took only 4sec. Interestingly, the 
lighter GrEp architecture, GrEp-s defined in Section 5.1, was only 0.7sec 
faster than GrEp. Considering that WSI might contain hundreds of thou-
sands of epithelial cells, the gain in speed might be of a few seconds 
only when using GrEp-s (28sec for 1M epithelial cells).

5.5.  Generalizability to unseen tissue types

The models trained on CRC were first applied to both endometrial 
and pancreas tissues without retraining the models. Then, finetuning 
was performed on the extraction of the node embeddings, meaning that 
only the ResNet18 module from GrEp, or the respective feature encoders 
of other methods were adjusted. On the other hand, the graph compo-
nent of the models remained unchanged, meaning that the graph models 
were only trained with CRC samples.

5.5.1.  Endometrium
CRC trained models performed well on endometrium tissue. How-

ever, a significant decrease in performance can be observed compared 
to CRC, especially for normal tissue. The three graph-based methods 
significantly outperformed the baseline (MCSpatNet vs. MCSpatNet + 
SENUCLS: p<0.001, 95%CI [-0.15, -0.07], Cohen-d: 0.3; MCSpatNet vs 
MCSpatNet + GrEp: p<0.001, 95%CI [0.14, 0.38], Cohen-d: 0.7), with 
GrEp significantly outperforming SENUCLS ( p<0.001, 95%CI [0.25, 
0.48], Cohen-d: 0.9). Interestingly, GrEp-s performed significantly bet-
ter than GrEp but with a small effect size (p<0.001, 95%CI [0.07, 
0.16], Cohen-d: 0.29). After finetuning, all models reached almost per-
fect performance, Table 5 and Supplementary Figure 8. After finetuning, 

Table 5 
Quantitative results of the generalization performance of CRC-trained models to both endometrium (Endo) and pancreatic tissues. -s stands for the 
lighter version of GrEp. “-" in the Fd columns indicate that the graph-based methods do not change the initial epithelial cell detection and the score 
remains the same as without graph-based post-processing.

 CRC trained models  Finetuned models
 Method Fd Fec  Fmc  Fnc Fd Fec  Fmc  Fnc

Endo

 MCSpatNet  79.75±0.18  69.28±6.17  84.07±1.90  38.50±15.78  78.86  96.96  97.48  96.12
 MCSpatNet + SENUCLS  -  76.39±-5.81  86.29±2.33  58.29±12.27  -  98.43±0.33  98.72±0.27  97.96±0.42
 MCSpatNet + GrEp  -  79.33±3.32  88.09±1.48  61.46±7.07  -  99.77±0.07  99.83±0.05  99.65±0.11
 MCSpatNet + GrEp-s  -  86.22±0.48  91.29±0.34  75.87±1.29  -  99.86±0.01  99.9±0.01  99.79±0.02

Pancreas

 MCSpatNet  79.77±0.18  40.33±1.14  67.06±0.52  14.08±1.68  82.28  71.59  50.82  83.26
 MCSpatNet + SENUCLS  -  36.96±0.70  68.77±0.15  1.76±1.38  -  82.77±0.41  75.38±0.86  87.01±0.90
 MCSpatNet + GrEp  -  41.21±4.55  68.78±0.9  7.79±8.99  -  97.26±0.32  96.58±0.38  97.73±0.28
 MCSpatNet + GrEp-s  -  46.07±1.19  67.63±1.0  19.93±1.46  -  96.98±0.25  96.18±0.0.33  97.53±0.2
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GrEp and GrEp-s were not significantly different but both SENUCLS and 
GrEp outperformed the baseline (MCSpatNet vs. MCSpatNet + SENU-
CLS: p<0.001, 95%CI [-0.62, -0.39], Cohen-d: 1.7; MCSpatNet vs MC-
SpatNet + GrEp: p<0.001, 95%CI [0.34, 0.59], Cohen-d: 1.5). This 
highlights the importance of the node features and more importantly 
the ability of graph-based models to generalize to unseen tissue types 
since the graph models were not adapted to endometrium.

5.5.2.  Pancreas
The inter-tissue differences between PDAC and CRC results in a poor 

distinction of epithelial cells from other cell types, despite the relatively 
high 𝐹 d. Said domain shift also affects the quality of the deep cellular 
representations the GNNs use as nodal features. This, along with the 
inability to construct meaningful epithelial graphs, renders only little 
improvement in the subtyping task from the graph subclassification. Af-
ter finetuning, the confusion of the epithelial cells with the other cells is 
corrected, but the 𝐹 ec is below 80% for the computer vision model (MC-
SpatNet), highlighting their difficulty to generalize as the tissue appear-
ance shifts from the original training set. The application of epithelial 
graphs significantly improved performance (MCSpatNet vs. MCSpatNet 
+ SENUCLS: p<0.05, 95%CI [-0.35, -0.01], Cohen-d: 0.8; MCSpatNet 
vs MCSpatNet + GrEp: p<0.001, 95%CI [0.52, 0.85], Cohen-d: 4.5), 
with GrEp surpassing SENUCLS (p<0.001, 96%CI [0.82, 0.91], Chen-d: 
7.2) and no significant difference was observed between GrEp and GrEp-
s. Visualization of the predictions from the CRC and finetuned models 
can be seen in Supplementary Figure 9. As for pancreatitis, the results 
show that they are correctly identified as non-tumor cells in most of the 
cases (2229 cells correctly classified as normal out of 2967 pancreati-
tis cells), with the most difficult regions containing glands resembling 
malignant epithelium, Supplementary Figure 10. The weighted classifi-
cation F1-score of 85.61% indicates there is still a good recognition of 
pancreatitis cells as non-cancerous.

6.  Discussion

In this work, we aimed at improving the challenging task of epithe-
lial cell sub-classification into normal and malignant from histology H&E 
images. The proposed workflow, named GrEp, preserves and exploits the 
structural changes occurring in tissues when transitioning from normal 
to malignant to infer cell classification through the use of MP functions 
on epithelial cell graphs. As shown by the node importance visualiza-
tions, nodes located far apart from a node of interest are relevant and 
play a crucial role in the graph-based classification, highlighting the 
benefit and importance of including larger tissue regions to infer ep-
ithelial sub-classes. These factors help increase model interpretability 
and explainability, ultimately increasing the trust in the models’ pre-
dictions. GrEp achieved state-of-the-art performance in distinguishing 
normal from malignant cells in CRC, reaching an almost perfect classi-
fication score.

Since GrEp relies on the extraction of ResNet18 hidden vectors as 
node features, it can be applied on top of any cell classification model 
as post-processing without interfering with the initial classification task. 
However, GrEp could easily be retrained for other node features such as 
hidden vectors from existing classification models (i.e. Cerberus, HoVer-
NeXt, CellViT, MCSpatNet), removing the node feature extraction step 
from ResNet18 and resulting in a lighter and faster epithelial refinement 
classification.

GrEp also showed high generalizability performance in both en-
dometrial cancer and PDAC. In both cases, the graph-based models were 
not changed, only the feature extraction models were finetuned. This 
highlights the similarity in tissue architecture between different adeno-
carcinoma types and proves that using topology to infer epithelial-cell 
type is a powerful tool. However, it is important to mention that while 
colorectal and endometrium tissues have a clear layered tissue architec-
ture, pancreatic tissue is composed of lobules of epithelial glands, azini 
and ducts inside fibrous stroma. The absence of layering in pancreatic 

tissue makes it more complex to analyze and especially difficult to dis-
tinguish chronic pancreatitis from PDAC in some cases. For that reason, 
the model was also evaluated on pancreatitis and showed a good per-
formance of 85% weighted F1 score. Eventhough GrEp performance on 
pancreatitis was lower than on normal versus malignant cells classifica-
tion, the model was able to classify pancreatitis as normal in the majority 
of the cases. It is important to note that pancreatitis can be very chal-
lenging to distinguish from PDAC even for expert pathologists. To make 
a decision, they tend to look at tissue slides with very low magnifica-
tion to have a good overview of the entire processes happening in the 
surrounding and overall tissue architecture. For that reason, we believe 
that to overcome this misclassification by the model, increasing the tile 
size (i.e. the size of the region covered by GrEp) to include more context 
information might help to improve further the classification of pancre-
atitis. Based on the high generalizability of GrEp on endometrium and 
pancreatic tissues, we believe that the model could be further expanded 
to other adenocarcinoma types.

While GrEp offers many strengths, there are opportunities for fur-
ther improvement. One limitation is that GrEp only performs binary 
classification and thus cannot properly handle ambiguous cases such as 
pancreatitis or dysplastic glands. Knowing that only regular and well-
organized glands were included in the normal class, slight changes in the 
expected normal epithelium architecture might shift the model’s predic-
tions towards the malignant class. resulting in dysplastic glands being 
classified as malignant. However, we believe the GNN part to be easily 
modifiable to include more classes by retraining and adapting the last 
linear layer to output more classes.

The results also showed that even under large perturbations (30% of 
randomness in the initial epithelial cell detection, Supplementary Table 
8) GrEp consistently identified normal from tumor cells. It is however 
important to note that while GrEp is robust to perturbations, the precise 
detection of epithelial cells remains crucial as inaccuracies could influ-
ence downstream analyses and potentially affect overall conclusions.

Another opportunity for improvement lies in the application of the 
pipeline to WSIs. As the visualizations of the results revealed that most of 
the misclassified cells by GrEp were found at tile edges, we believe that 
extracting overlapping tissue tiles from WSIs will help mitigate tile edge 
artifacts and potentially improve further the classification performance.

An additional limitation concerns the datasets of the generalization 
study. While the patient-level split between training, validation and test 
sets was carefully implemented during data curation, pancreas and en-
dometrium datasets originated from a single institutional cohort. The 
validation of the results on external datasets would be required to fur-
ther strengthen the findings. Furthermore, while the pancreatitis subset 
contained only 6 tiles. However, these images originate from different 
patients and collectively contained 4000 cells. For these reasons, we 
believe these 6 images to reflect a significant diversity and a meaning-
ful assessment of the model performance, though further validation on 
larger cohorts will further solidify our observations.

As shown by the experimental results, the proposed GrEp architec-
ture achieved state-of-the-art performance in the sub-classification of 
epithelial cells while being faster than other graph-based refinement so-
lutions. We thus believe GrEp to be useful for both clinical and research 
tasks. For example, the evaluation of the proportion of tumor cells (ver-
sus other cells) is routinely performed in pathology labs for both tumor 
banking and molecular pathology. There, an accurate estimation of the 
tumor cell fraction is of high importance to ensure reliable mutation 
calls and select appropriate targeted therapies. Multiple groups have 
shown the benefit of using DL methods for the estimation of tumor cell 
fraction [56–58]. Accurate malignant epithelial cell localization on his-
tology images is also crucial to correctly assess the presence of tumor-
infiltrating lymphocytes (TILs). TILs have been shown to be prognostic 
of better survival across malignancies and are also linked to microsatel-
lite instability and mismatch repair deficiency in CRC [59,60]. These 
two molecular pathways are used to determine treatment strategies. Fi-
nally, malignant epithelial cell localization on WSIs might also be of
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interest to automatically assess tumor budding (TB) status in CRC where 
TB can be used to define treatment decisions [61].

7.  Conclusion

In this paper, we proposed a graph-based deep learning pipeline, 
named GrEp, for the classification refinement of epithelial cells into 
normal and malignant. Leveraging the overall epithelium architecture 
changes upon transition towards malignancy, GrEp learns structural fea-
tures to accurately distinguish normal from malignant epithelial cell 
nuclei. Our proposed GrEp model performed significantly better than 
state-of-the-art models and showed great generalizability to unseen tis-
sue types (endometrium and pancreas), proving the strength of the tissue 
architecture-based classification method. Finally, thanks to its simple ar-
chitecture, GrEp was found to be faster than existing nuclei refinement 
method, making it a suitable solution for epithelial cell classification 
post-processing in both research and clinical settings.

Despite the numerous advantages of GrEp further enhancements are 
possible. First, despite the good generalization performance of GrEp to 
endometrium and pancreas tissues, additional validations on external 
datasets should be carried out to strengthen the findings and assess the 
performance across different institutions. Second, future improvements 
of the proposed GrEp workflow include its expansion to include interme-
diate epithelial subtypes such as dysplasia (premalignant glands) which 
might be classified as malignant by the current GrEp which could lead 
to biased epithelial estimations or false malignant positivity.
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\begin {equation}H^{(l + 1)} = \sigma \left ( \tilde {D}^{-\tfrac {1}{2}} \tilde {A} \tilde {D}^{-\tfrac {1}{2}} H^{(l)} W^{(l)} \right ) \label {Xeqn1-1}\end {equation}


\begin {equation}\boldsymbol {h}_{i}^{(l + 1)} = \sigma \left (\boldsymbol {W}^{(l)} \cdot \text {CONCAT} (\boldsymbol {h}_{i}^{(l)}, \text {AGGR} ({\boldsymbol {h}_{u}^{(l)}, \forall u \in N(i)}) ) \right ) \label {Xeqn2-2}\end {equation}


\begin {equation}\boldsymbol {h}_{i}^{(l + 1)} = \text {MLP} \left ( \left (1 + \epsilon ^{(l)} \right ) \cdot \boldsymbol {h}_{i}^{(l)} + \sum _{\forall u \in N(i)} \boldsymbol {h}_{u}^{(l)}\right ) \label {Xeqn3-3}\end {equation}


\begin {equation}\boldsymbol {h}_{i}^{(l + 1)} = \sigma \left ( \sum _{j \in N(i)} \alpha _{ij} \boldsymbol {W} \boldsymbol {h}_{j}^{(l)} \right ) \label {Xeqn4-4}\end {equation}


\begin {equation}\label {eq:Fd} \text {$\overline {\mbox {F}}$}_\text {d} = \frac {\text {TP}}{\text {TP} + 0.5 \times (\text {FP}_\text {u} + \text {FN}_\text {u})}\end {equation}


\begin {equation}\label {eq:Fct} \text {F}_\text {c}^\text {t} = \frac {\text {TP}^\text {t}}{\text {TP}^\text {t} + 0.5 \times (\text {FP}^\text {t}_\text {m} + \text {FN}^\text {t}_\text {m})}\end {equation}
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