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ARTICLE INFO ABSTRACT
Keywords: The automatic cell segmentation and classification from whole slide images plays an important role in digital
Digital pathology pathology, unlocking new opportunities for biomarker discovery. Despite extensive research, this task faces per-

Graph neural networks

Cell classification

Colorectal cancer

Pancreatic ductal adenocarcinoma
Endometrial cancer

sistent challenges such as the differentiation of epithelial cells into normal and malignant. Many existing models
lack reporting of epithelial subtyping, and when available, their performance is often suboptimal. This work
benchmarks state-of-the-art methods to highlight this limitation and introduces GrEp, a geometric deep learning
strategy that considers the broader epithelium tissue architecture to infer cell-level classification rather than
relying exclusively on nuclei morphology. The proposed graph-based workflow significantly outperformed state-
of-the-art nuclei classification models in colorectal cancer and generalized effectively to two unseen tissue types,
endometrium and pancreas, proving the robustness of the geometry-based model. Given its speed and accuracy,
we believe GrEp to be a valuable method to refine epithelial cell classification for downstream analyses in clinical

and research settings.

1. Introduction

Transformation towards Digital Pathology (DP) opens the field to
new opportunities for biomarker discovery and automated clinical ap-
plications through the development of Deep Learning (DL) methods.
These techniques also offer unprecedented possibilities in analyzing
large cohorts of scanned histopathology slides, named whole slide im-
ages (WSIs). As personalized medicine advances, the need to charac-
terize tumor composition and understand spatial histological features
becomes crucial [1].

In this context, automatic cell segmentation and classification from
colorectal cancer (CRC) haematoxylin and eosin (H&E) images has been
extensively studied in recent years, leveraging the H&E staining prop-
erties that highlights nuclei in purple blue color and other cytoplas-
mic and extracellular components in pink [2]. Yet, this task is not
considered fully resolved [3]. For example, most models either con-
tain a single epithelial class without differentiating normal from ma-
lignant epithelial cells, or underperform in this differentiation, often
misclassifying normal as malignant. However this distinction is clini-
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cally important as pathology scoring guidelines are based on the report-
ing of features associated to malignant epithelium such as the extent
of tumor invasion, tumor grade, and tumor budding [4]. The incorrect
identification of normal epithelial cells as malignant would thus induce
an important bias in automated settings. The challenge of accurately
differentiating normal and malignant cells arises due to the important
intraclass heterogeneity in malignant nuclei regarding size, shape, and
morphology as can be seen in Fig. 2. Moreover, the colonic epithelium
includes various epithelial cells (goblet cells, enterocytes, paneth cells,
tuft cells, enteroendocrine cells, and microfold cells), further complicat-
ing the classification [5]. Despite this complexity, on a larger scale, the
epithelium tissue covering the colonic tract is very well organized. It is
composed of a single-layer columnar epithelium that forms crypts. This
simple tissue organization is gradually lost as the stem cells, located at
the crypt base, accumulate mutations and begin to over-proliferate and
malignant epithelial masses begin to form [6]. The tissue-level changes
can be readily identified and are among the key indicators assessed
by pathologists to diagnose malignancies. Based on this biological phe-
nomenon, we propose in this work an epithelial nuclei classification
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refinement method, using epithelial cell-graphs to capture both local cell
features and global tissue structure, emulating pathologists’ decision-
making. Graph representations of healthy and malignant regions are
expected to reflect highly diverse structures that should be easy to clas-
sify. Interestingly, throughout cancerization, most tissues feature similar
epithelial reorganization processes from non-neoplastic to adenocarci-
noma. Under this hypothesis, the developed approach was expected to
be easily expanded to other adenocarcinoma types [7]. To evaluate this,
the model was applied and finetuned to endometrium and pancreatic
tissues.
The main contributions of this work are:

1. We propose a Graph-based Epithelial (GrEp) workflow for epithelial
cell sub-classification refinement between normal and malignant for
conventional cell classification methods.

2. The proposed GrEp model was compared with other state-of-the-art
models and significantly improved the epithelial sub-classification.

3. GrEp demonstrated to be over 4X faster than existing methods for
refining epithelial cell classification as post-processing step.

4. The model was extended to two other tissue types (endometrium
and pancreas), highlighting the generalizability of the proposed ap-
proach to new tissues.

5. Datasets, model weights and code are available on GitHub.!

2. Related work
2.1. Graph-based approaches in biomedical pattern recognition

Graph-based approaches and graph neural networks (GNN) have
gained large popularity in biomedical applications to represent and
learn from structured data such as proteins [8], drug design [9], gene
interactions [10] but also in histopathology medical imaging to model
tissues as networks of cells [11]. The capacity of such methods to cap-
ture spatial relationship and cellular interactions between histology ele-
ments emulate how pathologists work and allow to extract features that
are crucial for diagnosis [12]. In the field of computational pathology,
multiple groups have developed graph neural networks for gland clas-
sification [13], prediction of cancer subtype [14], cancer grade [15] or
mutations [16]. As most of these methods take advantage of cell-based
graphs, the initial cell detection and classification of cells must be per-
formed beforehand.

2.2. Nuclei detection and classification

The literature encompasses a diverse array of DL approaches dedi-
cated to nuclei detection and classification.

HoVer-Net [17] was the first method of this kind. It consists of a
shared encoder with three decoder branches to simultaneously tackle
semantic nuclei instance segmentation and nuclei separation using
vertical-and-horizontal distance maps. HoVer-Net remains a state-of-
the-art (SOTA) in the field, with some variations proposed over time
by introducing modern Vision Transformer encoders [18] or reducing
its high computational cost [19].

Chen et al.[20] predict the instance boundary mask for object separa-
tion. Ilyas and colleagues [21] build on this idea, adding a bidirectional
feature fusion strategy to the backbone to encourage better cross-scale
deep representation, which is especially important in DP.

StarDIST [22], another well-established cell segmentation method,
predicts centroid probability and distance-to-boundary maps. The model
was later extended for classification [23]. StarDIST inspired Chen et
al. [24] to leverage contextual information from sampled points within
centroid pixels and employ a shape-aware perceptual loss.

Recent Al progress has been fueled by foundation models like the
Segment Anything Model (SAM) [25], which have achieved remarkable

1 https://github.com/digitalpathologybern/GrEp/
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performance at zero-shot learning [26]. Multiple groups have adopted
it for nuclei segmentation and classification, with or without strategies
to employ the promptable properties of SAM [18,27].

Abousamra et al. [28] utilized point annotations to create a dilated
nucleus centroid mask. They leverage the cellular spatial configuration
for the classification task by predicting Ripley’s K function, as a measure
of cell clustering.

Other methods use detection transformers, which avoid post-
processing to predict the nuclei bounding-boxes [29]. Zhang and col-
leagues estimate nuclei radii for circular object prediction [30]. Huang
et al. infer centroid position instead [31]. They introduce a complex
adaptive transformer that employs learnable affine transformations for
data augmentation and uses two networks for self-distillation. Huang
and colleagues developed another model with a single network trained
in two stages [32]. The first fine-tunes the encoder to H&E data. Then,
the encoder is frozen, while learnable grouping prompts are incorporated
into the input to guide the classification by clustering similar cell em-
beddings.

2.3. Nuclei classification using GNNs

Although most deep learning methods for cell classification rely on
convolutional neural networks, some authors have already embarked on
integrating topological insights with Graph Neural Networks (GNNs) for
nuclei classification with the idea of leveraging spatial relationship to
increase classification performance.

Hassan and colleagues used message passing network to identify cell
communities [33]. All detected cells in given patches acted as nodes,
connected to their nearest neighbors using Euclidean distance. Through
message passing layers, edge weights were updated. Inter-community
edges were pruned, resulting in a set of community graphs. Each com-
munity was finally classified using deep neural network. Their experi-
ments showed improvement over HoVer-Net and MaskR-CNN.

Lou et al. presented SENUCLS, which combines a semantic segmen-
tation block trained alongside a GNN that serves as a feature extractor
for vertex and edge embeddings [34]. Node embeddings are enriched
by concatenating deep (from a recurrent neural network) and manual
shape descriptors of the nuclei mask. Their results are promising with-
out the label forcing of cell communities from the work of Hassan et
al.[33], but the feature extraction strategy significantly increases the
computational complexity of the model. Recently, the authors have ex-
panded their SENUCLS approach by adding a transformer module that
uses nodes and edges as input tokens, enabling the model for global
information exchange across the graph differing from immediate neigh-
bors [35].

In contrast, our work proposes a fully automated node feature extrac-
tion and classification method for epithelial cell differentiation. Unlike
other approaches designed to classify multiple cell types, the proposed
GrEp workflow concentrates on the task of epithelial cell subclassifi-
cation. This strategy allows the model to effectively learn epithelial-
specific attributes and to distinguish subtle features useful to accurately
differentiate normal from malignant cells. This focused approach re-
duces the complexity of multiclass classification while specializing for
a specific task, resulting in increased performance. The model can be
readily applied as post-processing of any nuclei detection/segmentation
and classification method and without relying on previous features to
infer epithelial differentiation.

3. Methods
3.1. Graph neural networks
Graph neural networks use convolutions on the nodes of a graph

to learn new node representations. As graphs can be described by their
adjacency matrix A and their node feature matrix H, graph convolutions
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rely on the multiplication of these two matrices which result in the ag-
gregation of the neighboring node features. In order to weight individual
features differently, a weight matrix W is included in the matrix mul-
tiplication process. Based on this principle, multiple message passing
(MP) aggregation strategies have been proposed. The most common MP
layers include GCN [36], GraphSage [37], GIN [38], and GAT [39] and
are described below. Although these MP layers rely on the aggregation
of features from neighboring nodes to learn new node representations,
they all differ slightly in their aggregation strategy.

While GCN aggregates neighbor’s nodes’ features via mean function
and normalizes it according to node degree (using the degree matrix D)
as:

1 1
O = a<D‘E ib2 H(I)W(l)> e

GraphSage concatenates a node’s own features with the previously av-
eraged features from its neighbors:

W{*" = (W . CONCAT(H", AGGR(K", Vu € N())) ) @

Using this concatenation strategy, GraphSage preserves the features
from the node of interest while aggregating the information from neigh-
bors. Following the same idea, GIN proposed a new learnable parameter
(e) to adjust the weight of the self node to preserve its identity:

h§’+1>=MLp<(1+e<’>)-hf.’>+ D h;“) ()
YueN (i)

After node feature aggregation a multi-layer perceptron (MLP) is applied
to produce distinctive neighborhood features for different communities.
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Finally, GAT introduced an attention mechanism to learn relative
weights for each node-node connection:

A*Y = 0'< > a,.,.Whj,”> )
JEN()

Different from GAT, the other three message passing layers weight all
neighbors with equal importance. Each MP layer has thus its own speci-
ficity and finding GNN architecture can be challenging and depends on
the task [40].

After the MP layers, the newly computed node embeddings are usu-
ally passed through linear layers for final node classification.

3.2. Proposed graph-based epithelial cell classification method (GrEp)

Multiple models have been developed for cell segmentation/detec-
tion and classification in CRC H&E images. These models show great
performance for epithelial cell detection and are used here as first step
to retrieve epithelial cell centroids. As illustrated in Fig. 1, the proposed
Graph-based epithelial cell classification workflow consists of the fol-
lowing three main steps:

(A) Epithelial nuclei feature extraction
Regions of 128 x 128px (64 x 64um) were cropped around pre-
viously detected epithelial centroids. This large crop size has
previously been shown to improve nuclei classification by preserv-
ing neighborhood information [41]. Then, to direct the model’s
attention to the central cell, a gamma-focus transformation was
applied to enhance the contrast in the tile center (64 x 64px), thus
highlighting the epithelial nucleus of interest. Conversely, the

N .
RIS 055 @ Epithelial cell (node)

- C augr[ngnted 1.28 Malignant epithelial
%J 2 EEIEeR 0.06 cell prediction (node)

1%}
2 © @ Normal epithelial cell
=< = prediction (node)
29 O
v o z — Graph edge
£5 & .
LE'“E 542 [mP] Message Passing layer

L 20 ‘382 Fully connectedd layer

232] s512x1

I Y, MF Median Filtering

Graph-based
classification

G)

Post-processing

Fig. 1. Overview of the proposed epithelial sub-classification graph-based model pipeline. Starting with a set of detected epithelial cells, the framework consists
of: (A) Epithelial nuclei feature extraction using a pretrained ResNet18 from GammaFocus augmented nucleus tiles; (B) Epithelial graph construction using the
previously detected epithelial centroids as nodes, the extracted ResNet18 vectors as node embeddings and Delaunay triangulation as edges. The graph is passed
through Message Passing (MP) layers for node classification; (C) Epithelial glands are clustered using short Delaunay edges to capture individual glands into single
subgraphs on which a Median Filter (MF) is applied to get the final nucleus class. For implementation of the method, a detailed pseudocode is presented in the

supplementary material.
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contrast of the surrounding region was decreased to minimize the
amount of information from neighboring cells [41]. An augmented
nucleus tile can be seen in Fig. 1.A. ResNetl8 [42] was trained
with gamma-augmented nuclei crops for normal versus malignant
binary classification. Deep morphology-related nuclear features
were extracted using its last hidden layer vector.

(B) Graph-based node classification
For each tile, an undirected epithelial cell-based graph was defined
as G = (V, E), where epithelial nucleus in a tile acted as a node,
forming the set V. Previously extracted nuclei embeddings from
ResNet18 were attached to each node as features. Nearby nodes
were then connected using the Delaunay triangulation [43],
forming the set of edges E. Delaunay triangulation was selected for
its ability to represent cell interactions and reflect how tissue orga-
nization changes with malignancy [44]. Edges above a determined
length were removed to prevent interactions between distant
nuclei that are unlikely to be related. Since the aim of the graph
is to capture the overall epithelium structure, the edge thresholds
were set above 100px (50um) to ensure that connections span
beyond immediate neighbors. As detailed in Section 3.3, different
edge thresholds were evaluated during the model optimization
process. Graph neural networks were trained and optimized for the
specific task of node classification (epithelial cell differentiation)
as detailed in Section 3.3. Finally, the optimal GNN was applied
to the epithelial cell graph to predict the labels of the nodes (nuclei).

(C) Post-processing

A final post-processing step was applied to smooth the predictions
from the graph-based model within individual glands. A very short
Delaunay threshold of 40px (20um) was used to cluster epithelial
cells into single glands, over which a Median Filter (MF) was ap-
plied. The 20um threshold was selected to effectively cluster indi-
vidual normal glands into single entities, as the average distance
between two normal epithelial cells ranged from 9 to 17um in the
training dataset. Supplementary Fig. 2 illustrates different cluster-
ing values across normal and malignant tissue regions. The edge
length must be sufficient to capture all epithelial cells within a gland
but short enough to prevent merging adjacent glands. This is partic-
ularly relevant when normal and malignant glands are in close prox-
imity to prevent their clustering. This final post-processing step re-
sulted in homogeneous predictions in each epithelial gland or clus-
ter.

3.3. Implementation details

The GrEp workflow was implemented using PyTorch and PyTorch
Geometric libraries [45,46]. An AdaptiveAvgPool2d and a Linear layer
were added to ImageNet pretrained ResNet18 to adapt for binary clas-
sification. ResNet18 was trained on the nuclei crops extracted from the
three folds of the Lizard dataset. In order to account for stain varia-
tions in histopathology and increase model generalization, nuclei crops
were augmented for color variations (ColorJitter) and standard image
augmentation (rotations, vertical/horizontal flips) [47]. Finally, the GF
augmentation was applied with gamma values of 0.5 and 1.5. ResNet18
was trained for 150 epochs with the AdamW optimizer and a learn-
ing rate of 1e~® on an NVIDIA GTX1080 GPU. For endometrium and
pancreas tissues, the ResNet18 trained on CRC was finetuned for 100
epochs.

When training the GNN models, different graph structures and model
architectures were explored to find the best composition. The four MP
layers described in Section 3.1 were evaluated and optimized using
the open-source python library HyperOpt [48]. For each MP type, the
optimization process tested 100 combinations of hyperparameters us-
ing the 3-fold cross-validation (CV) from the Lizard dataset (described
in Section 4.1). The parameters optimized for each MP type included
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the number and depth of MP layers, as well as learning rate, learning
rate decay, weight decay, and step size, the definition of the search
space can be found in Supplementary Table 1. The optimization pro-
cedure was repeated for different graph structures to also determine
the optimal edge length (Delaunay triangulation threshold set at: 100,
150, 200, 250 and 300px) and node embedding strategy (ResNetl18
embedding or its concatenation with zero-mean normalized node po-
sition (x,y) and class prediction). MP layers were followed by 3 fully
connected (FC) layers. All graph models were trained on an NVIDIA
RTX4090 GPU for 150 epochs with the AdamW optimizer [49], binary
cross-entropy loss, LeakyRelu activation function, and dropout (p=0.5)
layers in between MP and FC layers. To prevent overfitting, trainings
and finetunings were stopped when reaching the smallest validation
loss.

3.4. Baselines evaluation of the proposed model

In evaluating our cell classification model, we present three sets of
baselines. The first, a Random Forest (RF) model, set a performance
threshold that relied on quantitative features extracted from nuclei mask
annotations or, when unavailable, the masks produced by the Cerberus
model [50]. The feature vector consisted of a total of 83 uncorrelated
features that could be categorized as shape, texture, color, spatial ar-
rangement, cell-graph-based, and chromatin distribution [51] descrip-
tors. In this case, the task was simplified to a binary classification prob-
lem (normal versus malignant).

The second allows benchmarking against current SOTA cell detec-
tion and classification models: HoVer-Net [17], MCSpatNet [28], and
PGT [32]. SENUCLS [34] was chosen as the baseline for instance classi-
fication refinement using a GNN. The models were retrained using the
3-fold CV from the Lizard dataset to ensure fair comparison. To stabi-
lize training, a minor modification was made to MCSpatNet by incor-
porating a background channel into the centroid segmentation branch.
HoVer-Net, MCSpatNet, and PGT detected and classified cells into three
categories: normal, malignant, and "other" (non-epithelial cells). For the
subtyping task, SENUCLS distinguished between epithelial subclasses.
To ensure better comparability with our method, SENUCLS was trained
exclusively on the epithelial predictions of MCSpatNet and PGT, disre-
garding all other cell types.

The final experiments assess the potential gain of using GrEp as post-
processing to existing cell detection and classification models pretained
on separate datasets. To this end, the originally published weights of
HoVer-Net, HoVer-Next [19], CellViT [18], MCSpatNet, and Cerberus
[52] were downloaded and the models were applied to the test set both
without and with GrEp.

3.5. Evaluation metrics

In the context of this study, GNN methods operate as a classification
post-processing. Since they cannot influence the detection performance,
the assessment of detection and sub-classification tasks is conducted in-
dependently.

First, for the detection task and in accordance with the literature
[53], a predicted cell instance was considered a True Positive (TP)
if it was found within the area defined by a radius of 3um (6px at
20x) around the closest nuclear center of the Ground Truth (GT). An
unmatched prediction was a False Positive (FP,), while a missed GT
cell was considered a False Negative (FN,). The detection F1-score
was calculated globally for all cell types (F4), where the score is
given by Eq. 5.
ﬁd _ TP

TP + 0.5 X (FP, + FN,)

(5)

The classification task only used the matching epithelial predictions
with the epithelial Ground Truth (GT) annotations. The classification
F1-score (F'c, see Eq. 6) was used to answer whether the models are able
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to discern the epithelial subtypes. Here, the FN! and FP{ denote wrong
classification for matching epithelial cell predictions. The weighted F1-
score (Fg) is also calculated. All the metrics are reported at the dataset
level.
Bt = TP!

¢ TP'+0.5x (FP{, +FN.)

(6)

4. Datasets

The datasets used consist of crops from H&E WSIs of different origin
and sizes acquired at a magnification of 20x (~ 0.5um/pixel). Example
tiles are displayed in Fig. 2 and the specificities of dataset partitions
can be seen in Table 1. Fig. 2 also presents nuclei crops from normal
and malignant epithelial cells to highlight the intra-class heterogeneity
and inter-class resemblances, motivating the use of larger contextual
features to classify single nuclei.

4.1. Colorectal cancer (CRC)

The Lizard dataset introduced by Graham et al. [54] was used to
train CRC models. The lack of subtyping for epithelial cells led to the
selection of a subset of 148 tiles, so each tile clearly only contained either
malignant or normal epithelial cells. The PanNuke subset from Lizard
was kept aside for testing. The original 3-folds from Lizard were used
to train the models and ensure dataset independence between the folds.
Additionally, 19 new tiles from TCGA were annotated and added as sec-
ond independent test set. These tiles were selected to display a variety
of epithelial gland morphologies and staining intensities and thus rep-
resent a realistic data distribution. Out of these 19 tiles, 5 contained a
mixture of normal and malignant epithelium tissue. These regions were
specifically selected to observe the graph-based model performance in
regions where both epithelial types are found in close proximity.

4.2. Endometrial cancer

Eighty-five tiles (1000 x 1000px) were extracted from an institutional
cohort to contain either normal or malignant epithelium. All epithelial
nuclei were annotated at their centroid location as normal or malignant.
Tiles were divided into train, validation and test sets according to patient
stratification, ensuring that data originating from one patient would be
found in a single partition.

@ Colorectal

Malignant Normal

Endometrium

Malignant
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Table 1

Dataset Description. For each tissue type, the number of tiles and total
number of cells are given. N: Normal, M: Malignant, P:Pancreatitis, Mix:
Mixture of normal and malignant cells on the same tile.

Tissue type Dataset Epithelial subtype #tiles #cells
. . 52 55,665
Train (Lizard) M % 106,823
N 7 2724
CRC
Test (PanNuke) M 10 2892
N 7 6782
Test(TCGA) M 7 9502
Mix 5 8812
Train N 9 5289
M 6 5062
Endometrium Validati N 10 4124
alidation M 10 13,864
Test N 33 13,139
M 17 18,174
Train N 7 7926
M 14 3784
N 6 5415
PDAC idati
Validation M 6 3939
N 7 6725
Test M 10 4484
P 6 3986

4.3. Pancreatic ductal adenocarcinoma (PDAC)

Fifty-six tiles (1000 x 1000px) from an internal PDAC WSIs cohort
were extracted and their cell nuclei annotated following the same strat-
egy as for CRC and endometrium. The PDAC cohort contained an addi-
tional tissue type: pancreatitis. Acute and chronic pancreatitis are both
inflammatory diseases of the pancreas that can also be associated with
PDAC. Indeed, inflammation and cancer are frequently linked, and pan-
creatitis can be found in close proximity with PDAC on WSIs. Moreover,
despite being different diseases, pancreatitis and PDAC can be difficult
to differentiate from a morphology point of view. Examples of normal,
malignant, and pancreatitis tiles are shown in Fig. 2. The pancreatitis
subtype was not used for finetuning processes. Instead, it was kept in

@ Pancreas

Normal Pancreatitis

Fig. 2. Dataset visualization: colorectal images in yellow, endometrium in pink and pancreas in blue. The top tiles (1000 x 1000px) show contextual regions where
glands architecture can be seen. For each tissue type, two normal tiles and two malignant tiles are displayed. Normal and malignant epithelial nuclei crops are shown
for each tissue type in the two bottom rows. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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the test set to evaluate how the models behave when presented with
an unseen sub-class. In this case, given that pancreatitis originates from
non-cancer diseases, these tiles are expected to be assigned to the nor-
mal epithelium category. As for endometrium, tiles were divided into
training, validation and test sets based on patient-level partitioning.

5. Results
5.1. Model selection

For each MP layer, the model architecture, hyperparameters, and
graph structure were selected as the HyperOpt combination that mini-
mized the loss, Supplementary Tables 2-5. Consistent over all four MP
types, larger models performed better. The optimization results revealed
that the best node embedding consisted of the ResNet18 embedding
alone. The addition of node position or ResNetl8 prediction was not
helpful. In addition, longer edges performed better as the best perfor-
mances were achieved for edges 250px long. This can be explained by
the fact that the aim of the graph-based model is to capture the overall
tissue structure at the large scale, which can only be accomplished with
longer edges.

Each model was then retrained, using the same folds, with the op-
timal set of parameters and hyperparameters, Supplementary Table 6.
All 4 MP types showed very high classification performance, but the
GCN architecture, having the smallest loss and the highest F1-score was
selected as the best performing model. The GCN together with the post-
processing are referred to as GrEp in the rest of the paper.

Since the model optimization process converged to very large mod-
els, we were interested in evaluating the gain of using such large models
compared to lighter architecture. The same optimization process was re-
peated while restricting the number of MP layers to be between 2 and
4. The optimal graph structure was supposed to stay the same, for that
reason the edge length and node embedding used were the ones found
to be optimal for the larger models. The resulting smaller architecture
was found to be 4 layers deep with 512 neurons. The lighter GCN ar-
chitecture with the post-processing is referred as GrEp-s (GrEp-small).
Supplementary Table 7 shows the number of parameters for all models
trained in this study.

5.2. GrEp model performance and comparison with existing models

Out of the models trained on the Lizard dataset for cell detection
and classification, MCSpatNet showed a superior performance in detec-
tion compared to HoVer-Net and PGT and was adopted as the method
of choice for epithelial cells detection in the next experiments. Subse-
quently, graph-based methods were applied to the epithelial cells iden-
tified by MCSpatNet. According to Table 2 graph-based models (SENU-
CLS and GrEp) showed significant better performance than non-graph-
based methods on PanNuke (p<0.001, 95%CI [-0.05, -0.03], Cohen-
d: 1.88), and TCGA (MCSpatNet vs MCSpatNet + SENUCLS: p<0.01,
95 %CI [-0.15, -0.04], Cohen-d: 0.5 and MCSpatNet vs. MCSpatNet +
GrEp: p<0.001, 95%CI [0.71, 0.82], Cohen-d: 4.7]). The RF trained

Table 2
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to classify hand-crafted features extracted from nuclei masks performed
worse than all DL-based methods, probably due to the higher adapt-
ability to data variability from DL models. This highlights the benefit
of using DL techniques for nuclei classification tasks and motivated the
use of ResNet18 to extract cell features. Interestingly, our proposed GrEp
model achieved the highest average performance on both normal and
malignant classes individually and significantly outperformed SENUCLS
on TCGA test set (p<0.001, CI95% [0.8, 0.91], Cohen-d: 4.3).

The results can be visualized in Fig. 3. The lower detection score of
HoVer-Net and PGT can be seen especially in high-density epithelium
regions. Dense normal epithelial crypts were particularly challenging for
MCSpatNet, which misclassified most of these cells as malignant. This
effect was reverted by using graph-based methods. Notably, GrEp effec-
tively handled regions with adjacent normal and malignant tissues de-
spite its long edges, with most of the remaining misclassified cells after
GrEp post-processing located along tile edges. This is probably an effect
from the missing part of the neighboring epithelium tissue, degrading
the performance.

The benefit of using GrEp as post-processing for existing nuclei clas-
sification models was then evaluated. GrEp was applied on top of the
published weights from HoVer-Net, HoVer-NeXt, CellViT, MCSpatNet,
and Cerberus models, Fig. 4 and Table 3. GrEp significantly improved
the epithelial sub-classification for all the models and can add valuable
information to models that do not assess normal versus malignant ep-
ithelium (MCSpatNet and Cerberus here).

Finally, to verify that GrEp would not be dramatically affected by
inaccurate epithelial nuclei detections, we computed the performance
of GrEp under perturbation. To do so, some nuclei were randomly re-
moved and some non-epithelial nuclei were randomly added from TCGA
ground truth annotation. GrEp performance was computed on true ep-
ithelial cells only. Results show that GrEp is not affected by inaccurate
epithelial detection and the performance decreases only for large per-
turbations (more than 50% random cell selection), Supplementary Table
8 and Supplementary Fig. 4.

5.3. Ablation study

The proposed method was evaluated using different variations to
show the impact of each of its components on the performance. MCSpat-
Net was used as epithelial cell detection model and ResNet18 classifica-
tion of the detected epithelial cells acted as the baseline for comparison.
Iteratively, each module of the proposed method was individually incor-
porated to the pipeline and evaluated, Table 4 and Supplementary Fig.
5. One-way ANOVA revealed a significant difference in accuracy among
the full GrEp (RN18 + GCN + MF) and ablated variants (F = 28.8, p
= 0.0001). Post-hoc Tukey tests were performed to pairewise compare
variants and indicated that all elements included in the full model sig-
nificantly increased the performance (p <0.05). It is important to note
that the addition of median filtering to smooth predictions inside indi-
vidual glands on the baseline improves the score without outperform-
ing the graph-based model, showing the benefit of using MP layers be-
fore gland clustering. Importantly, MF works because graph-based node

Quantitative assessment of existing nuclei classification methods (Cerberus, HoVer-Net, PGT, MCSpatNet). Hand-crafted nuclei features were

extracted from Cerberus nuclei masks followed by Random Forest (RF) classification.

wn

in the F, columns indicate that the graph-based

methods do not change the initial epithelial cell detection and the score remains the same as without graph-based post-processing.

PanNuke TCGA

Method F, Fe Fm F? Fq Fe F" F?
Hand-crafted + RF 85.63 84.24 86.99 72.3 71.61 64.29 76.66
HoVer-Net 62.26+2.02  97.31+0.09  97.81+0.10  96.30+0.36  60.50+2.29  81.41+9.46  82.84+11.50  79.13+6.59
PGT 75.06+2.05  99.76+0.22  99.77+0.20  99.74+0.24  65.52+3.16  87.94+0.47  89.77+0.35  85.16+1.99
MCSpatNet 79.32+0.38  94.32+0.96  95.41+0.6  93.14x1.40  72.02+0.61  80.84+1.75  86.69+1.28  72.14+3.24
MCSpatNet + SENUCLS 100+0.0 100+0.0 100+0.0 90.09+1.43  90.59+1.0 89.50+2.04
MCSpatNet + GrEp 100+0.0 100+0.0 100+0.0 97.2+0.88  97.84:+0.65  96.1+1.28
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Fig. 3. Visual results on TCGA test tiles using existing cell detection and classification models (HoVer-Net, PGT and MCSpatNet) retrained for normal versus malignant
epithelial cell classification in comparison with the ground truth. The two bottom lines present results when applying graph-based epithelial post-processing (SENUCLS
and the proposed GrEp). Green dots highlight normal cells and red dots malignant cells. Zoomed insets with predictions are presented in Supplementary Figure 3
with corresponding F1 score. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3

Quantitative comparison of the epithelial classification performance be-
tween existing nuclei classification models without and with the proposed
GrEp model. “" in the F4 columns indicate that the graph-based methods
do not change the initial epithelial cell detection and the score remains the
same as without graph-based post-processing.

Method Fq Fe Fn B
HoVer-Net 44.51 56.65 80.29 9.17
HoVer-Net + GrEp - 96.82 97.7 95.07
HoVer-NEXT 43.62 58.98 78.64 26.51
HoVer-NEXT + GrEp - 96.89 95.79 97.56
CellViT 56.37 67.27 82.02 41.91
CellViT + GrEp - 96.48 95.09 97.28
MCSpatNet + GrEp 51.87 97.31 97.95 96.12
Cerberus + GrEp 72.33 98.05 97.46 98.43

classification performance is already high, otherwise this approach
might drastically reduce the overall performance. The full version of
the proposed approach significantly outperforms all baselines and in-
termediate steps (p<0.001), demonstrating the necessity of including
each element in the final model.

Table 4

Ablation Study on TCGA dataset using GrEp variants. The full GrEp pipeline
corresponds to FN18 + GCN + MF. RN18: ResNet18 node classification and
embedding extraction, MF: Median Filter.

GrEp elements TCGA

RN18 GCN MF 1_75 F» F?
v - - 87.58+0.97 90.83+0.84 82.01+1.22
v - v 90.13+1.14 92.51+1.03 86.04+1.44
v v - 94.45 +£0.77 95.75 +0.48 92.21+1.26
v v 4 97.2 +0.88 97.84 +0.65 96.1+1.28

The impact of using GrEp to refine cell embeddings can be seen in
Fig. 5. A principal component analysis (PCA) was performed on the
node embeddings at the input (ResNet18 embeddings) and output layer
of GrEp GNN, as shown in Fig. 5A. The input node features show an
important overlap of normal and malignant feature vectors. The same
behaviour is observed when applying t-distributed stochastic neighbor
embedding (t-SNE), see Supplementary Figure 6. Patches correspond-
ing to these overlapping embeddings were retrieved and displayed ei-
ther clustered normal epithelium, as can be found at the bottom of
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Fig. 4. Visualization of GrEp as post-processing on existing pretrained cell segmentation and classification models (HoVer-Net, HoVer-NeXt, CellViT, MCSpatNet
and Cerberus). Red dots indicate malignant cells; green dots indicate normal cells. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

healthy colonic crypts, or single-layered epithelium from malignant re-
gions. This confusion is expected at the small cell-level context. This
uncertainty gets reverted by using GNNs. As a result, the embeddings
are more distinctly segregated, highlighting the ability of GrEp to bet-
ter capture features specific to each epithelial subtype based on contex-
tual information rather than just nuclei features. Fig. 5.B shows GrEp’s

capability of correctly classifying normal cells in crowded crypts as well
as more organized tumor regions.

To further investigate the node classification performed by GrEp,
node importance were computed and visualized using GNNExplainer
[551, Supplementary Figure 7. When selecting specific nodes that were
initially misclassified by ResNet18 (located at the crowded bottom of
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Fig. 5. A. Principal component analysis (PCA) on the input node embeddings (ResNet18 last hidden layer) and GrEp’s last hidden layer. Green dots indicate normal
cells, and red dots indicate malignant cells. The black circle highlights the region where the normal and malignant embeddings from ResNet18 overlap. For each
region in the PCA plot, representative epithelial tiles were retrieved. B. Tiles of malignant and normal epithelial cells that were misclassified by ResNet18 and
correctly classified by GrEp. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

healthy crypts) it is interesting to see that GrEp took most advantage
of epithelial cells located in less dense crypts regions. Similarly, when
looking at malignant nodes, it is interesting to see that the model looks
at cells beyond the direct neighbouring region. This emphasize the ben-
efit of using global graph modeling of the tissues to infer the proper
epithelial cell classification.

5.4. Inference time

The speed of the GrEp workflow was compared to SENUCLS. Both
models were run on an Nvidia A100 GPU (80GB VRAM) and the infer-
ence times were assessed on the TCGA test set (total of 25,096 epithe-
lial cells). Our proposed model was more than 4X faster than SENU-
CLS (57 sec vs. 4min 25 sec), probably due to the more complex feature
extraction process of SENUCLS. The feature extraction from ResNet18
was also the most time-consuming step in the proposed GrEp pipeline,
accounted for 81 % of the inference time (46sec). The post-processing
median filtering, on the other hand, took only 4sec. Interestingly, the
lighter GrEp architecture, GrEp-s defined in Section 5.1, was only 0.7sec
faster than GrEp. Considering that WSI might contain hundreds of thou-
sands of epithelial cells, the gain in speed might be of a few seconds
only when using GrEp-s (28sec for 1M epithelial cells).

Table 5

5.5. Generalizability to unseen tissue types

The models trained on CRC were first applied to both endometrial
and pancreas tissues without retraining the models. Then, finetuning
was performed on the extraction of the node embeddings, meaning that
only the ResNet18 module from GrEp, or the respective feature encoders
of other methods were adjusted. On the other hand, the graph compo-
nent of the models remained unchanged, meaning that the graph models
were only trained with CRC samples.

5.5.1. Endometrium

CRC trained models performed well on endometrium tissue. How-
ever, a significant decrease in performance can be observed compared
to CRC, especially for normal tissue. The three graph-based methods
significantly outperformed the baseline (MCSpatNet vs. MCSpatNet +
SENUCLS: p<0.001, 95 %ClI [-0.15, -0.07], Cohen-d: 0.3; MCSpatNet vs
MCSpatNet + GrEp: p<0.001, 95 %CI [0.14, 0.38], Cohen-d: 0.7), with
GrEp significantly outperforming SENUCLS ( p<0.001, 95%CI [0.25,
0.48], Cohen-d: 0.9). Interestingly, GrEp-s performed significantly bet-
ter than GrEp but with a small effect size (p<0.001, 95%CI [0.07,
0.16], Cohen-d: 0.29). After finetuning, all models reached almost per-
fect performance, Table 5 and Supplementary Figure 8. After finetuning,

Quantitative results of the generalization performance of CRC-trained models to both endometrium (Endo) and pancreatic tissues. -s stands for the
lighter version of GrEp. “-" in the F4 columns indicate that the graph-based methods do not change the initial epithelial cell detection and the score

remains the same as without graph-based post-processing.

CRC trained models

Finetuned models

Method Fq Fe F» 13 Fq Fe F® F
MCSpatNet 79.75+0.18  69.28+6.17  84.07+1.90  38.50+15.78  78.86  96.96 97.48 96.12

Endo MCSpatNet + SENUCLS - 76.39+-5.81  86.29+2.33  58.29+12.27 - 98.43+0.33  98.72+0.27 97.96+0.42
MCSpatNet + GrEp 79.33+3.32  88.09+1.48  61.46+7.07 99.77+0.07  99.83+0.05 99.65:0.11
MCSpatNet + GrEp-s 86.22+0.48  91.29+0.34  75.87+1.29 99.86+0.01  99.9:+0.01 99.79-+0.02
MCSpatNet 79.77+0.18  40.33+1.14  67.06+0.52  14.08+1.68  82.28  71.59 50.82 83.26

pancreas  MCSpatNet + SENUCLS - 36.96+0.70  68.77+0.15  1.76+1.38 - 82.77+0.41  75.38+0.86 87.01+0.90
MCSpatNet + GrEp 41.21+4.55  68.78+0.9  7.79+8.99 97.26+0.32  96.58+0.38  97.73+0.28
MCSpatNet + GrEp-s 46.07+1.19  67.63+1.0 19.93+1.46 96.98+0.25  96.18+0.0.33  97.53x0.2
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GrEp and GrEp-s were not significantly different but both SENUCLS and
GrEp outperformed the baseline (MCSpatNet vs. MCSpatNet + SENU-
CLS: p<0.001, 95 %CI [-0.62, -0.39], Cohen-d: 1.7; MCSpatNet vs MC-
SpatNet + GrEp: p<0.001, 95%CI [0.34, 0.59], Cohen-d: 1.5). This
highlights the importance of the node features and more importantly
the ability of graph-based models to generalize to unseen tissue types
since the graph models were not adapted to endometrium.

5.5.2. Pancreas

The inter-tissue differences between PDAC and CRC results in a poor
distinction of epithelial cells from other cell types, despite the relatively
high F4. Said domain shift also affects the quality of the deep cellular
representations the GNNs use as nodal features. This, along with the
inability to construct meaningful epithelial graphs, renders only little
improvement in the subtyping task from the graph subclassification. Af-
ter finetuning, the confusion of the epithelial cells with the other cells is
corrected, but the fg is below 80 % for the computer vision model (MC-
SpatNet), highlighting their difficulty to generalize as the tissue appear-
ance shifts from the original training set. The application of epithelial
graphs significantly improved performance (MCSpatNet vs. MCSpatNet
+ SENUCLS: p<0.05, 95%CI [-0.35, -0.01], Cohen-d: 0.8; MCSpatNet
vs MCSpatNet + GrEp: p<0.001, 95%CI [0.52, 0.85], Cohen-d: 4.5),
with GrEp surpassing SENUCLS (p <0.001, 96 %CI [0.82, 0.91], Chen-d:
7.2) and no significant difference was observed between GrEp and GrEp-
s. Visualization of the predictions from the CRC and finetuned models
can be seen in Supplementary Figure 9. As for pancreatitis, the results
show that they are correctly identified as non-tumor cells in most of the
cases (2229 cells correctly classified as normal out of 2967 pancreati-
tis cells), with the most difficult regions containing glands resembling
malignant epithelium, Supplementary Figure 10. The weighted classifi-
cation F1-score of 85.61 % indicates there is still a good recognition of
pancreatitis cells as non-cancerous.

6. Discussion

In this work, we aimed at improving the challenging task of epithe-
lial cell sub-classification into normal and malignant from histology H&E
images. The proposed workflow, named GrEp, preserves and exploits the
structural changes occurring in tissues when transitioning from normal
to malignant to infer cell classification through the use of MP functions
on epithelial cell graphs. As shown by the node importance visualiza-
tions, nodes located far apart from a node of interest are relevant and
play a crucial role in the graph-based classification, highlighting the
benefit and importance of including larger tissue regions to infer ep-
ithelial sub-classes. These factors help increase model interpretability
and explainability, ultimately increasing the trust in the models’ pre-
dictions. GrEp achieved state-of-the-art performance in distinguishing
normal from malignant cells in CRC, reaching an almost perfect classi-
fication score.

Since GrEp relies on the extraction of ResNet18 hidden vectors as
node features, it can be applied on top of any cell classification model
as post-processing without interfering with the initial classification task.
However, GrEp could easily be retrained for other node features such as
hidden vectors from existing classification models (i.e. Cerberus, HoVer-
NeXt, CellViT, MCSpatNet), removing the node feature extraction step
from ResNet18 and resulting in a lighter and faster epithelial refinement
classification.

GrEp also showed high generalizability performance in both en-
dometrial cancer and PDAC. In both cases, the graph-based models were
not changed, only the feature extraction models were finetuned. This
highlights the similarity in tissue architecture between different adeno-
carcinoma types and proves that using topology to infer epithelial-cell
type is a powerful tool. However, it is important to mention that while
colorectal and endometrium tissues have a clear layered tissue architec-
ture, pancreatic tissue is composed of lobules of epithelial glands, azini
and ducts inside fibrous stroma. The absence of layering in pancreatic
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tissue makes it more complex to analyze and especially difficult to dis-
tinguish chronic pancreatitis from PDAC in some cases. For that reason,
the model was also evaluated on pancreatitis and showed a good per-
formance of 85 % weighted F1 score. Eventhough GrEp performance on
pancreatitis was lower than on normal versus malignant cells classifica-
tion, the model was able to classify pancreatitis as normal in the majority
of the cases. It is important to note that pancreatitis can be very chal-
lenging to distinguish from PDAC even for expert pathologists. To make
a decision, they tend to look at tissue slides with very low magnifica-
tion to have a good overview of the entire processes happening in the
surrounding and overall tissue architecture. For that reason, we believe
that to overcome this misclassification by the model, increasing the tile
size (i.e. the size of the region covered by GrEp) to include more context
information might help to improve further the classification of pancre-
atitis. Based on the high generalizability of GrEp on endometrium and
pancreatic tissues, we believe that the model could be further expanded
to other adenocarcinoma types.

While GrEp offers many strengths, there are opportunities for fur-
ther improvement. One limitation is that GrEp only performs binary
classification and thus cannot properly handle ambiguous cases such as
pancreatitis or dysplastic glands. Knowing that only regular and well-
organized glands were included in the normal class, slight changes in the
expected normal epithelium architecture might shift the model’s predic-
tions towards the malignant class. resulting in dysplastic glands being
classified as malignant. However, we believe the GNN part to be easily
modifiable to include more classes by retraining and adapting the last
linear layer to output more classes.

The results also showed that even under large perturbations (30 % of
randomness in the initial epithelial cell detection, Supplementary Table
8) GrEp consistently identified normal from tumor cells. It is however
important to note that while GrEp is robust to perturbations, the precise
detection of epithelial cells remains crucial as inaccuracies could influ-
ence downstream analyses and potentially affect overall conclusions.

Another opportunity for improvement lies in the application of the
pipeline to WSIs. As the visualizations of the results revealed that most of
the misclassified cells by GrEp were found at tile edges, we believe that
extracting overlapping tissue tiles from WSIs will help mitigate tile edge
artifacts and potentially improve further the classification performance.

An additional limitation concerns the datasets of the generalization
study. While the patient-level split between training, validation and test
sets was carefully implemented during data curation, pancreas and en-
dometrium datasets originated from a single institutional cohort. The
validation of the results on external datasets would be required to fur-
ther strengthen the findings. Furthermore, while the pancreatitis subset
contained only 6 tiles. However, these images originate from different
patients and collectively contained 4000 cells. For these reasons, we
believe these 6 images to reflect a significant diversity and a meaning-
ful assessment of the model performance, though further validation on
larger cohorts will further solidify our observations.

As shown by the experimental results, the proposed GrEp architec-
ture achieved state-of-the-art performance in the sub-classification of
epithelial cells while being faster than other graph-based refinement so-
lutions. We thus believe GrEp to be useful for both clinical and research
tasks. For example, the evaluation of the proportion of tumor cells (ver-
sus other cells) is routinely performed in pathology labs for both tumor
banking and molecular pathology. There, an accurate estimation of the
tumor cell fraction is of high importance to ensure reliable mutation
calls and select appropriate targeted therapies. Multiple groups have
shown the benefit of using DL methods for the estimation of tumor cell
fraction [56-58]. Accurate malignant epithelial cell localization on his-
tology images is also crucial to correctly assess the presence of tumor-
infiltrating lymphocytes (TILs). TILs have been shown to be prognostic
of better survival across malignancies and are also linked to microsatel-
lite instability and mismatch repair deficiency in CRC [59,60]. These
two molecular pathways are used to determine treatment strategies. Fi-
nally, malignant epithelial cell localization on WSIs might also be of
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interest to automatically assess tumor budding (TB) status in CRC where
TB can be used to define treatment decisions [61].

7. Conclusion

In this paper, we proposed a graph-based deep learning pipeline,
named GrEp, for the classification refinement of epithelial cells into
normal and malignant. Leveraging the overall epithelium architecture
changes upon transition towards malignancy, GrEp learns structural fea-
tures to accurately distinguish normal from malignant epithelial cell
nuclei. Our proposed GrEp model performed significantly better than
state-of-the-art models and showed great generalizability to unseen tis-
sue types (endometrium and pancreas), proving the strength of the tissue
architecture-based classification method. Finally, thanks to its simple ar-
chitecture, GrEp was found to be faster than existing nuclei refinement
method, making it a suitable solution for epithelial cell classification
post-processing in both research and clinical settings.

Despite the numerous advantages of GrEp further enhancements are
possible. First, despite the good generalization performance of GrEp to
endometrium and pancreas tissues, additional validations on external
datasets should be carried out to strengthen the findings and assess the
performance across different institutions. Second, future improvements
of the proposed GrEp workflow include its expansion to include interme-
diate epithelial subtypes such as dysplasia (premalignant glands) which
might be classified as malignant by the current GrEp which could lead
to biased epithelial estimations or false malignant positivity.

CRediT authorship contribution statement

Ana Leni Frei: Writing — review & editing, Writing — original draft,
Visualization, Validation, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization; Javier Garcia-Baroja: Writing — re-
view & editing, Writing — original draft, Visualization, Investigation,
Formal analysis; Tilman Rau: Writing — review & editing, Validation,
Supervision, Data curation; Christina Neppl: Writing — review & edit-
ing, Validation, Supervision, Data curation; Alessandro Lugli: Writing
- review & editing, Validation, Supervision, Data curation; Wiebke So-
lass: Writing — review & editing, Validation, Supervision, Data cura-
tion; Martin Wartenberg: Writing — review & editing, Validation, Su-
pervision, Data curation; Andreas Fischer: Writing — review & editing,
Validation, Supervision, Methodology, Conceptualization; Inti Zlobec:
Writing — review & editing, Supervision, Resources, Project administra-
tion, Funding acquisition, Data curation, Conceptualization.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests: Inti
Zlobec reports financial support was provided by Swiss National Science
Foundation. If there are other authors, they declare that they have no
known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgements

This work was funded by the Swiss National Science Foun-
dation (CRSII5_193832). Calculations were performed on UBELIX
https://www.id.unibe.ch/hpc, the HPC cluster at the University of Bern.
Results presented here are partially based on data provided by the TCGA
Research Network.

11

Pattern Recognition 171 (2026) 112197

References
[1] V. Baxi, R. Edwards, M. Montalto, S. Saha, Digital pathology and artificial intelli-
gence in translational medicine and clinical practice, Mod. Pathol. 35 (1) (2022)
23-32. https://doi.org/10.1038/541379-021-00919-2
A.H. Fischer, K.A. Jacobson, J. Rose, R. Zeller, Hematoxylin and eosin staining of
tissue and cell sections, CSH Protoc. (2008). https://doi.org/10.1101/pdb.prot4986
S. Graham, Q.D. Vu, M. Jahanifar, M. Weigert, U. Schmidt, W. Zhang, J. Zhang, S.
Yang, J. Xiang, X. Wang, J.L. Rumberger, E. Baumann, P. Hirsch, L. Liu, C. Hong, A.L.
Aviles-Rivero, A. Jain, H. Ahn, Y. Hong, H. Azzuni, M. Xu, M. Yaqub, M.-C. Blache,
B. Piégu, B. Vernay, T. Scherr, M. Bohland, K. Loffler, J. Li, W. Ying, C. Wang, D.
Snead, S.E.A. Raza, F. Minhas, N.M. Rajpoot, CoNIC challenge: pushing the frontiers
of nuclear detection, segmentation, classification and counting, Med. Image Anal.
92 (2024) 103047. https://doi.org/10.1016/j.media.2023.103047
M.B. Loughrey, F. Webster, M.J. Arends, I. Brown, L.J. Burgart, C. Cunningham, J.F.
Flejou, S. Kakar, R. Kirsch, M. Kojima, A. Lugli, C. Rosty, K. Sheahan, N.P. West,
R.H. Wilson, L.D. Nagtegaal, Dataset for pathology reporting of colorectal cancer:
recommendations from the international collaboration on cancer reporting (ICCR),
Ann. Surg. (2022). https://doi.org/10.1097/SLA.0000000000005051
V. Bonis, C. Rossell, H. Gehart, The intestinal epithelium — Fluid fate and rigid
structure from crypt bottom to villus tip, Front. Cell Dev. Biol. 9 (2021).
L. Cernat, C. Blaj, R. Jackstadt, L. Brandl, J. Engel, H. Hermeking, A. Jung, T. Kirch-
ner, D. Horst, Colorectal cancers mimic structural organization of normal colonic
crypts, PLoS ONE 9 (2014).
D. Coradini, C. Casarsa, S. Oriana, Epithelial cell polarity and tumorigenesis: new
perspectives for cancer detection and treatment, Acta Pharmacol. Sin. (2011)
52-564. https://doi.org/10.1038/aps.2011.20
M. Li, Y. Cao, X. Liu, H. Ji, Knowledge-enhanced and structure-enhanced represen-
tation learning for protein-ligand binding affinity prediction, Pattern Recognit. 166
(2025) 111701. https://doi.org/10.1016/j.patcog.2025.111701
X. Chen, S. Li, R. Liu, B. Shi, J. Liu, J. Wu, K. Xu, Molecular graph contrastive
learning with line graph, Pattern Recognit. 162 (2025) 111380. https://doi.org/10.
1016/j.patcog.2025.111380
D. Hu, Y. Liu, X. Wang, L. Geng, F. Zhang, Z. Xiao, J.C.-W. Lin, Multi-information
fusion graph convolutional network for cancer driver gene identification, Pattern
Recognit. 165 (2025) 111619. https://doi.org/10.1016/j.patcog.2025.111619
D. Ahmedt-Aristizabal, M.A. Armin, S. Denman, C. Fookes, L. Petersson, A survey on
graph-based deep learning for computational histopathology, Computerized Med.
Imaging Graph. 95 (2022) 102027. https://doi.org/10.1016/j.compmedimag.2021.
102027
L. Studer, J.M. Bokhorst, I. Nagtegaal, I. Zlobec, H. Dawson, A. Fischer, Tumor
budding t-cell graphs : assessing the need for resection in pT1 colorectal can-
cer patients, in: Proceedings of Medical Imaging with Deep Learning (MIDL),
2023.
L. Studer, S. Toneyan, I. Zlobec, H. Dawson, A. Fischer, Graph-based classification of
intestinal glands in colorectal cancer tissue images, in: MICCAI 2019 Computational
Pathology Workshop COMPAY, 2019.
P. Pati, G. Jaume, A. Foncubierta-Rodriguez, F. Feroce, A.M. Anniciello, G. Scog-
namiglio, N. Brancati, M. Fiche, E. Dubruc, D. Riccio, M. Di Bonito, G. De Pietro,
G. Botti, J.-P. Thiran, M. Frucci, O. Goksel, M. Gabrani, Hierarchical graph rep-
resentations in digital pathology, Med. Image Anal. 75 (2022) 102264. https:
//doi.org/10.1016/j.media.2021.102264
Y. Zhou, S. Graham, N. Alemi Koohbanani, M. Shaban, P.-A. Heng, N. Rajpoot, CGC-
Net: cell graph convolutional network for grading of colorectal cancer histology
images, in: 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), 2019, pp. 388-398. https://doi.org/10.1109/ICCVW.2019.00050
W. Lu, S. Graham, M. Bilal, N. Rajpoot, F. Minhas, Capturing cellular topology
in multi-gigapixel pathology images, in: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2020, pp. 1049-1058. https:
//doi.org/10.1109/CVPRW50498.2020.00138
S. Graham, Q.D. Vu, S.E.A. Raza, A. Azam, Y.W. Tsang, J.T. Kwak, N. Rajpoot,
Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue
histology images, Med. Image Anal. 58 (2019) 101563. https://doi.org/10.1016/j.
media.2019.101563
F. Horst, M. Rempe, L. Heine, C. Seibold, J. Keyl, G. Baldini, S. Ugurel, J. Siveke, B.
Griinwald, J. Egger, J. Kleesiek, Cellvit: vision transformers for precise cell segmen-
tation and classification, Med. Image Anal. 94 (2024) 103143. https://doi.org/10.
1016/j.media.2024.103143
E. Baumann, B. Dislich, J.L. Rumberger, I.D. Nagtegaal, M.R. Martinez, I. Zlobec,
HoVer-NeXt: a fast nuclei segmentation and classification pipeline for next genera-
tion histopathology, in: Medical Imaging with Deep Learning, 2024.
H. Chen, X. Qi, L. Yu, Q. Dou, J. Qin, P.-A. Heng, DCAN: Deep contour-aware
networks for object instance segmentation from histology images, Med. Image Anal.
36 (2017) 135-146. https://doi.org/10.1016/j.media.2016.11.004
T. Ilyas, Z.1. Mannan, A. Khan, S. Azam, H. Kim, F. De Boer, TSFD-Net: tissue specific
feature distillation network for nuclei segmentation and classification, Neural Netw.
151 (2022) 1-15. https://doi.org/10.1016/j.neunet.2022.02.020
M. Weigert, U. Schmidt, R. Haase, K. Sugawara, G. Myers, Star-convex poly-
hedra for 3D object detection and segmentation in microscopy, in: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020,
Pp. 3666-3673.
M. Weigert, U. Schmidt, Nuclei Instance Segmentation and Classification in
Histopathology Images with Stardist, in: 2022IEEE International Symposium on
Biomedical Imaging Challenges (ISBIC), IEEE, 2022, pp. 1-4.
S. Chen, C. Ding, M. Liu, J. Cheng, D. Tao, CPP-net: context-aware polygon proposal
network for nucleus segmentation, IEEE Trans. Image Process. 32 (2023) 980-994.

[2]

[3]

[4

=

[5]

[6

—

71

[81

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]


http://dx.doi.org/10.13039/501100001711
http://dx.doi.org/10.13039/501100001711
https://doi.org/10.1038/s41379-021-00919-2
https://doi.org/10.1038/s41379-021-00919-2
https://doi.org/10.1101/pdb.prot4986
https://doi.org/10.1101/pdb.prot4986
https://doi.org/10.1016/j.media.2023.103047
https://doi.org/10.1016/j.media.2023.103047
https://doi.org/10.1097/SLA.0000000000005051
https://doi.org/10.1097/SLA.0000000000005051
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0005
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0005
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0006
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0006
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0006
https://doi.org/10.1038/aps.2011.20
https://doi.org/10.1038/aps.2011.20
https://doi.org/10.1016/j.patcog.2025.111701
https://doi.org/10.1016/j.patcog.2025.111701
https://doi.org/10.1016/j.patcog.2025.111380
https://doi.org/10.1016/j.patcog.2025.111380
https://doi.org/10.1016/j.patcog.2025.111380
https://doi.org/10.1016/j.patcog.2025.111380
https://doi.org/10.1016/j.patcog.2025.111619
https://doi.org/10.1016/j.patcog.2025.111619
https://doi.org/10.1016/j.compmedimag.2021.102027
https://doi.org/10.1016/j.compmedimag.2021.102027
https://doi.org/10.1016/j.compmedimag.2021.102027
https://doi.org/10.1016/j.compmedimag.2021.102027
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0012
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0012
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0012
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0012
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0013
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0013
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0013
https://doi.org/10.1016/j.media.2021.102264
https://doi.org/10.1016/j.media.2021.102264
https://doi.org/10.1016/j.media.2021.102264
https://doi.org/10.1016/j.media.2021.102264
https://doi.org/10.1109/ICCVW.2019.00050
https://doi.org/10.1109/ICCVW.2019.00050
https://doi.org/10.1109/CVPRW50498.2020.00138
https://doi.org/10.1109/CVPRW50498.2020.00138
https://doi.org/10.1109/CVPRW50498.2020.00138
https://doi.org/10.1109/CVPRW50498.2020.00138
https://doi.org/10.1016/j.media.2019.101563
https://doi.org/10.1016/j.media.2019.101563
https://doi.org/10.1016/j.media.2019.101563
https://doi.org/10.1016/j.media.2019.101563
https://doi.org/10.1016/j.media.2024.103143
https://doi.org/10.1016/j.media.2024.103143
https://doi.org/10.1016/j.media.2024.103143
https://doi.org/10.1016/j.media.2024.103143
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0019
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0019
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0019
https://doi.org/10.1016/j.media.2016.11.004
https://doi.org/10.1016/j.media.2016.11.004
https://doi.org/10.1016/j.neunet.2022.02.020
https://doi.org/10.1016/j.neunet.2022.02.020
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0022
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0022
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0022
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0022
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0023
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0023
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0023
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0024
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0024

A. L. Freietal

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. White-
head, A.C. Berg, W.-Y. Lo, P. Dollér, R. Girshick, Segment Anything, 2023, arXiv:
2304.02643

R. Deng, C. Cui, Q. Liu, T. Yao, L.W. Remedios, S. Bao, B.A. Landman, Y. Tang,
L.E. Wheless, L.A. Coburn, K.T. Wilson, Y. Wang, A.B. Fogo, H. Yang, Y. Huo, Seg-
ment anything model (SAM) for digital pathology: assess zero-shot segmentation on
whole slide imaging, in: Medical Imaging with Deep Learning, Short Paper Track,
2023.

Z. Shui, Y. Zhang, K. Yao, C. Zhu, S. Zheng, J. Li, H. Li, Y. Sun, R. Guo,
L. Yang, Unleashing the power of prompt-driven nucleus instance segmenta-
tion, in: A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, G. Varol
(Eds.), Computer Vision — ECCV 2024, Springer Nature Switzerland, Cham, 2025,
pp. 288-304.

S. Abousamra, D. Belinsky, J. Van Arnam, F. Allard, E. Yee, R. Gupta, T. Kurc, D.
Samaras, J. Saltz, C. Chen, Multi-class cell detection using spatial context repre-
sentation, in: 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
2021, pp. 3985-3994. https://doi.org/10.1109/ICCV48922.2021.00397

O. Pina, E. Dorca, V. Vilaplana, Cell-DETR: efficient cell detection and classi-
fication in WSIs with transformers, in: Medical Imaging with Deep Learning,
2024.

H. Zhang, P. Liang, Z. Sun, B. Song, E. Cheng, CircleFormer: Circular Nuclei De-
tection in Whole Slide Images with Circle Queries and Attention, Springer Nature
Switzerland, 2023, p. 493-502. https://doi.org/10.1007/978-3-031-43993-3_48
J. Huang, H. Li, X. Wan, G. Li, Affine-consistent transformer for multi-class cell nu-
clei detection, in: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), 2023, pp. 21384-21393.

J. Huang, H. Li, W. Sun, X. Wan, G. Li, Prompt-based grouping transformer for nu-
cleus detection and classification, in: Medical Image Computing and Computer As-
sisted Intervention — MICCAI 2023, Springer Nature Switzerland, 2023, p. 569-579.
https://doi.org/10.1007/978-3-031-43993-3_55

T. Hassan, S. Javed, A. Mahmood, T. Qaiser, N. Werghi, N. Rajpoot, Nucleus clas-
sification in histology images using message passing network, Med. Image Anal. 79
(2022) 102480. https://doi.org/10.1016/j.media.2022.102480

W. Lou, X. Wan, G. Li, X. Lou, C. Li, F. Gao, H. Li, Structure embedded nucleus
classification for histopathology images, IEEE Trans. Med. Imaging (2024) 1. https:
//doi.org/10.1109/TMI.2024.3388328

W. Lou, G. Li, X. Wan, H. Li, Cell graph transformer for nuclei classification, in:
Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

T.N. Kipf, M. Welling, Semi-supervised classification with graph convolu-
tional networks, in: International Conference on Learning Representations,
2017.

W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs,
Adv. Neural Inf. Process. Syst. 30 (2017).

K. Xu, W. Hu, J. Leskovec, S. Jegelka, How Powerful are graph neural networks?,
in: International Conference on Learning Representations, 2019.

P. Veli¢kovi¢, G. Cucurull, A. Casanova, A. Romero, P. Li0, Y. Bengio, Graph atten-
tion networks, in: International Conference on Learning Representations, 2018.

J. You, R. Ying, J. Leskovec, Design space for graph neural networks, 34th Confer-
ence on Neural Information Processing Systems (NeurIPS) (2020).

A.L. Frei, A. Khan, P. Zens, A. Lugli, I. Zlobec, A. Fischer, GammaFocus: an im-
age augmentation method to focus model attention for classification, in: Medical
Imaging with Deep Learning, short paper track, 2023.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770-778.

B. Delaunay, Sur la sphére vide. a la memoire de georges voronoi, Bulletin de
I’Académie des Sciences de 'URSS. Classe des sciences mathématiques et na 1934
(6) (1934) 793-800.

G. Lu, D. Wang, X. Qin, S. Muller, J.V. Little, X. Wang, A.Y. Chen, G. Chen, B.
Fei, Histopathology feature mining and association with hyperspectral imaging for
the detection of squamous neoplasia, Sci. Rep. 9 (2019). https://doi.org/10.1038/
s41598-019-54139-5

12

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Pattern Recognition 171 (2026) 112197

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, A. Lerer, Automatic differentiation in PyTorch, in: NIPS 2017 Workshop
on Autodiff, 2017.

M. Fey, J.E. Lenssen, Fast Graph Representation Learning with PyTorch Geometric,
2019, 1903.02428

D. Tellez, G. Litjens, P. Bandi, W. Bulten, J.-M. Bokhorst, F. Ciompi, J. van der Laak,
Quantifying the effects of data augmentation and stain color normalization in convo-
lutional neural networks for computational pathology, Med. Image Anal. 58 (2019)
101544, https://doi.org/10.1016/j.media.2019.101544

J. Bergstra, D. Yamins, D. Cox, Making a science of model search: hyperparameter
optimization in hundreds of dimensions for vision architectures, in: International
Conference on Machine Learning, PMLR, 2013, pp. 115-123.

D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Y. Bengio, Y.
LeCun (Eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

S. Graham, Q.D. Vu, M. Jahanifar, S.E.A. Raza, F. Minhas, D. Snead, N. Rajpoot,
One model is all you need: multi-task learning enables simultaneous histology image
segmentation and classification, Med. Image Anal. 83 (2023) 102685. https://doi.
org/10.1016/J.MEDIA.2022.102685

L.T. Young, P.W. Verbeek, B.H. Mayall, Characterization of chromatin distribution
in cell nuclei, Cytometry 7 (5) (1986) 467-474.

S. Graham, Q.D. Vu, M. Jahanifar, S.E.A. Raza, F. Minhas, D. Snead, N. Rajpoot,
One model is all you need: multi-task learning enables simultaneous histology image
segmentation and classification, Med. Image Anal. (2022) 102685.

K. Sirinukunwattana, S.E.A. Raza, Y.-W. Tsang, D.R.J. Snead, I.A. Cree, N.M. Ra-
jpoot, Locality sensitive deep learning for detection and classification of nuclei in
routine colon cancer histology images, IEEE Trans. Med. Imaging 35 (5) (2016)
1196-1206. https://doi.org/10.1109/tmi.2016.2525803

S. Graham, M. Jahanifar, A. Azam, M. Nimir, Y.-W. Tsang, K. Dodd, E. Hero, H.
Sahota, A. Tank, K. Benes, et al., Lizard: a large-scale dataset for colonic nuclear
instance segmentation and classification, in: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2021, pp. 684-693.

Z.Ying, D. Bourgeois, J. You, M. Zitnik, J. Leskovec, GNNExplainer: generating ex-
planations for graph neural networks, in: H. Wallach, H. Larochelle, A. Beygelzimer,
F.d. Alché-Buc, E. Fox, R. Garnett (Eds.), Adv. Neural Inf. Process. Syst., 32, Curran
Associates, Inc., 2019.

T. Sakamoto, T. Furukawa, H.H.N. Pham, K. Kuroda, K. Tabata, Y. Kashima, E.N.
Okoshi, S. Morimoto, A. Bychkov, J. Fukuoka, A collaborative workflow between
pathologists and deep learning for the evaluation of tumour cellularity in lung ade-
nocarcinoma, Histopathology 81 (6) (2022) 758-769. https://doi.org/10.1111 /his.
14779

A.L. Frei, R. Oberson, E. Baumann, A. Perren, R. Grobholz, A. Lugli, H. Dawson, C.
Abbet, 1. Lertxundi, S. Reinhard, A. Mookhoek, J. Feichtinger, R. Sarro, G. Gadient,
C. Dommann-Scherrer, J. Barizzi, S. Berezowska, K. Glatz, S. Dertinger, Y. Banz, R.
Schoenegg, L. Rubbia-Brandt, A. Fleischmann, G. Saile, P. Mainil-Varlet, R. Biral,
L. Giudici, A. Soltermann, A.B. Chaubert, S. Stadlmann, J. Diebold, K. Egervari, C.
Béniére, F. Saro, A. Janowczyk, I. Zlobec, Pathologist computer-aided diagnostic
scoring of tumor cell fraction: a swiss national study, Mod. Pathol. 36 (12) (2023)
100335. https://doi.org/10.1016/j.modpat.2023.100335

V. L’Imperio, G. Cazzaniga, M. Mannino, D. Seminati, F. Mascadri, J. Ceku, G. Casati,
F. Bono, C. Eloy, E.G. Rocco, C. Frascarelli, M. Fassan, U. Malapelle, F. Pagni, Digital
counting of tissue cells for molecular analysis: the quantum pipeline, Virchows
Archiv (2024). https://doi.org/10.1007/s00428-024-03794-9

T.C. Smyrk, P. Watson, K. Kaul, H.T. Lynch, Tumor-infiltrating lymphocytes are
a marker for microsatellite instability in colorectal carcinoma, Cancer (2001)
2417-2422.

K. Brummel, A.L. Eerkens, M. de Bruyn, HW. Nijman, Tumour-infiltrating lym-
phocytes: from prognosis to treatment selection, Br. J. Cancer (2023). https:
//doi.org/10.1038/541416-022-02119-4

1. Zlobec, M.D. Berger, A. Lugli, Tumour budding and its clinical implica-
tions in gastrointestinal cancers, Br. J. Cancer (2020). https://doi.org/10.1038/
s41416-020-0954-z


http://arXiv.org/abs/2304.02643
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0025
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0025
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0025
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0025
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0025
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0026
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0026
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0026
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0026
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0026
https://doi.org/10.1109/ICCV48922.2021.00397
https://doi.org/10.1109/ICCV48922.2021.00397
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0028
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0028
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0028
https://doi.org/10.1007/978-3-031-43993-3_48
https://doi.org/10.1007/978-3-031-43993-3_48
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0030
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0030
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0030
https://doi.org/10.1007/978-3-031-43993-3_55
https://doi.org/10.1007/978-3-031-43993-3_55
https://doi.org/10.1016/j.media.2022.102480
https://doi.org/10.1016/j.media.2022.102480
https://doi.org/10.1109/TMI.2024.3388328
https://doi.org/10.1109/TMI.2024.3388328
https://doi.org/10.1109/TMI.2024.3388328
https://doi.org/10.1109/TMI.2024.3388328
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0034
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0034
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0035
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0035
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0035
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0036
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0036
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0037
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0037
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0038
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0038
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0039
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0039
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0040
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0040
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0040
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0041
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0041
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0041
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0042
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0042
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0042
https://doi.org/10.1038/s41598-019-54139-5
https://doi.org/10.1038/s41598-019-54139-5
https://doi.org/10.1038/s41598-019-54139-5
https://doi.org/10.1038/s41598-019-54139-5
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0044
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0044
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0044
https://doi.org/10.1016/j.media.2019.101544
https://doi.org/10.1016/j.media.2019.101544
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0046
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0046
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0046
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0047
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0047
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0047
https://doi.org/10.1016/J.MEDIA.2022.102685
https://doi.org/10.1016/J.MEDIA.2022.102685
https://doi.org/10.1016/J.MEDIA.2022.102685
https://doi.org/10.1016/J.MEDIA.2022.102685
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0049
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0049
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0050
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0050
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0050
https://doi.org/10.1109/tmi.2016.2525803
https://doi.org/10.1109/tmi.2016.2525803
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0052
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0052
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0052
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0052
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0053
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0053
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0053
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0053
https://doi.org/10.1111/his.14779
https://doi.org/10.1111/his.14779
https://doi.org/10.1111/his.14779
https://doi.org/10.1111/his.14779
https://doi.org/10.1016/j.modpat.2023.100335
https://doi.org/10.1016/j.modpat.2023.100335
https://doi.org/10.1007/s00428-024-03794-9
https://doi.org/10.1007/s00428-024-03794-9
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0057
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0057
http://refhub.elsevier.com/S0031-3203(25)00858-1/sbref0057
https://doi.org/10.1038/s41416-022-02119-4
https://doi.org/10.1038/s41416-022-02119-4
https://doi.org/10.1038/s41416-022-02119-4
https://doi.org/10.1038/s41416-022-02119-4
https://doi.org/10.1038/s41416-020-0954-z
https://doi.org/10.1038/s41416-020-0954-z
https://doi.org/10.1038/s41416-020-0954-z
https://doi.org/10.1038/s41416-020-0954-z

	GrEp: Graph-based epithelial cell classification refinement in histopathology H&E images
	1 Introduction
	2 Related work
	2.1 Graph-based approaches in biomedical pattern recognition
	2.2 Nuclei detection and classification
	2.3 Nuclei classification using GNNs

	3 Methods
	3.1 Graph neural networks
	3.2 Proposed graph-based epithelial cell classification method (GrEp)
	3.3 Implementation details
	3.4 Baselines evaluation of the proposed model
	3.5 Evaluation metrics

	4 Datasets
	4.1 Colorectal cancer (CRC)
	4.2 Endometrial cancer
	4.3 Pancreatic ductal adenocarcinoma (PDAC)

	5 Results
	5.1 Model selection
	5.2 GrEp model performance and comparison with existing models
	5.3 Ablation study
	5.4 Inference time
	5.5 Generalizability to unseen tissue types
	5.5.1 Endometrium
	5.5.2 Pancreas


	6 Discussion
	7 Conclusion



\begin {equation}H^{(l + 1)} = \sigma \left ( \tilde {D}^{-\tfrac {1}{2}} \tilde {A} \tilde {D}^{-\tfrac {1}{2}} H^{(l)} W^{(l)} \right ) \label {Xeqn1-1}\end {equation}


\begin {equation}\boldsymbol {h}_{i}^{(l + 1)} = \sigma \left (\boldsymbol {W}^{(l)} \cdot \text {CONCAT} (\boldsymbol {h}_{i}^{(l)}, \text {AGGR} ({\boldsymbol {h}_{u}^{(l)}, \forall u \in N(i)}) ) \right ) \label {Xeqn2-2}\end {equation}


\begin {equation}\boldsymbol {h}_{i}^{(l + 1)} = \text {MLP} \left ( \left (1 + \epsilon ^{(l)} \right ) \cdot \boldsymbol {h}_{i}^{(l)} + \sum _{\forall u \in N(i)} \boldsymbol {h}_{u}^{(l)}\right ) \label {Xeqn3-3}\end {equation}


\begin {equation}\boldsymbol {h}_{i}^{(l + 1)} = \sigma \left ( \sum _{j \in N(i)} \alpha _{ij} \boldsymbol {W} \boldsymbol {h}_{j}^{(l)} \right ) \label {Xeqn4-4}\end {equation}


\begin {equation}\label {eq:Fd} \text {$\overline {\mbox {F}}$}_\text {d} = \frac {\text {TP}}{\text {TP} + 0.5 \times (\text {FP}_\text {u} + \text {FN}_\text {u})}\end {equation}


\begin {equation}\label {eq:Fct} \text {F}_\text {c}^\text {t} = \frac {\text {TP}^\text {t}}{\text {TP}^\text {t} + 0.5 \times (\text {FP}^\text {t}_\text {m} + \text {FN}^\text {t}_\text {m})}\end {equation}
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