
CTC Transcription Alignment of the Bullinger Letters: Automatic Improvement
of Annotation Quality

Marco Peer1, Anna-Scius Bertrand2 and Andreas Fischer1
1University of Fribourg, Switzerland

2University of Applied Sciences and Arts Western Switerland, Fribourg, Switzerland
marco.peer@unifr.ch, anna.scius-bertrand@hefr.ch, andreas.fischer@unifr.ch

Abstract

Handwritten text recognition for historical documents re-
mains challenging due to handwriting variability, degraded
sources, and limited layout-aware annotations. In this
work, we address annotation errors—particularly hyphen-
ation issues—in the Bullinger correspondence, a large 16th-
century letter collection. We introduce a self-training
method based on a CTC alignment algorithm that matches
full transcriptions to text line images using dynamic pro-
gramming and model output probabilities trained with the
CTC loss. Our approach improves performance (e.g., by 1.1
percentage points CER with PyLaia) and increases align-
ment accuracy. Interestingly, we find that weaker models
yield more accurate alignments, enabling an iterative train-
ing strategy. We release a new manually corrected subset of
100 pages from the Bullinger dataset, along with our code
and benchmarks. Our approach can be applied iteratively
to further improve the CER as well as the alignment quality
for text recognition pipelines. Code and data are available
via https://github.com/andreas-fischer-unifr/nntp.

1. Introduction

Handwritten Text Recognition (HTR) remains a challeng-
ing task in document analysis, particularly for historical
documents, due to the high variability of handwriting styles,
the degraded condition of the sources, and the diversity of
languages and scripts [7]. In addition, the annotation pro-
cess requires historical expertise to produce accurate tran-
scriptions, which makes it both time-consuming and costly.
End-to-end learning approaches based on deep neural net-
works further increase this issue, as they typically rely on
large quantities of annotated training data in the form of
text line images paired with their transcriptions [10]. Given
the high effort involved in creating such ground truth data,
a trade-off often arises between data quality and quantity.

A key difficulty in the context of acquiring ground truth

hoc tempus, [...], tam tenui stipendio
vixisse [...], quid hactenus decessit,

(a)

hoc tempus, ..., tam tenui stipendio
vixisse ... si, quid hactenus decessit,
in causis obediant, si viderint semel

HTR

0.1 0.2 0.4 0.3

0.7 0.1 0.1 0.2

0.2 0.7 0.3 0.5

0.0 0.0 0.1 0.0

0.0 0.0 0.1 0.0

a
b
..

ε

t0 t1
..

tN
+

Letter Transcription

hoc tempus, tam tenui
tam tenui stipendio
vixisse si, quid
hactenus decessit, ..

hoc tempus, ..., tam tenui stipen
dio vixisse ... si, quid hactenus de
cessit, in causis obediant, si viderint

CTC Alignment Algorithm

(b)

Figure 1. Bullinger dataset. (a) Examples of alignment errors (red)
in the Bullinger dataset. (ID: 6 00 r1l{19,20}) (b) Overview
of our method. We use our CTC alignment algorithm and propose
a self-training scheme to improve HTR performance to remove
errors caused by hyphenations.

for training lies in the differing requirements of historical
scholarship and computational processing: historians, on
the one hand, lean towards regularized versions of texts
where abbreviations are resolved and special characters are
normalized to suit the reading habits of the contemporary
audience, whereas HTR systems rely on character-accuracte
transcriptions with respect to the visual representation [13].
In this work, we address one major challenge of this pro-
cess through a case study — namely the hyphenation prob-
lem due to an automated alignment — on the Bullinger
correspondence [19], a large and linguistically diverse col-
lection of 16th-century letters from Switzerland, for which
experts have produced accurate transcriptions of the letters
of Heinrich Bullinger, an influential Swiss Reformer and

1

ar
X

iv
:2

50
8.

07
90

4v
1

 [
cs

.C
V

]
 1

1
A

ug
 2

02
5

https://github.com/andreas-fischer-unifr/nntp
https://arxiv.org/abs/2508.07904v1

theologian, and his correspondences. However, the current
transcriptions are provided only letter-wise without any lay-
out information to enable HTR training (transcriptions done
by historians for the Bullinger collection are publicly avail-
able via GitHub1). Therefore, to create training data for
HTR, the Bullinger dataset contributed by Scius-Bertrand et
al.[19] applies an automatic alignment via Transkribus[15]
between these letter-level transcriptions and extracted text
line images. While this process enables the creation of a
large dataset — over 100,000 line images - it also introduces
systematic errors, mainly caused by hyphenations at the be-
ginning and end of lines. Although multiple other errors are
present in the ground truth, including misaligned parts of
hyphenated words, abbreviations that are written out in full
and therefore differ from the image, incorrect capitalization,
and mismatched punctuation marks, Jungo et al.[10] identi-
fied hyphenation as the most common inconsistency within
the data collection. It does not only affect the quality of
the training data but also the reliability of evaluation results
when using the Bullinger dataset for HTR research. An ex-
ample of a wrong hyphenation in the training set is shown
in Figure1a.

To tackle the misalignment, improve the annotation qual-
ity and study its influence on the Bullinger collection, we in-
troduce a self-training procedure based on a Connectionist
Temporal Classification (CTC) [8] alignment algorithm in
our work, as shown in Figure 1b. It uses dynamic program-
ming to find an optimal sequence with respect to the output
probabilities of our HTR models trained with the CTC loss
function. Furthermore, it takes the full letter transcription
(the ground truth - provided by experts, without any lay-
out information), and outputs the aligned text in terms of
lines. We align the training set of the Bullinger dataset [19]
and finetune the models to, as we show in our results, im-
prove the HTR - in case of the PyLaia framework by 1.1
percentage points on the CER – as well as the alignment
accuracy. Secondly, we inspect our algorithm and find that
the alignment accuracy is even higher when using a weakly
trained model. This process can be efficiently repeated iter-
atively to further enhance the text recognition. To examine
our methodology, results are evaluated on a manually cre-
ated and corrected dataset consisting of 100 pages in total
to ensure precise transcription.

To summarize, our contributions are as follows:
• We provide a new, manually annotated and corrected

dataset of the Bullinger collection,
• We introduce a CTC alignment algorithm for text align-

ment to insert line breaks to match a given layout when
ground truth transcriptions are available,

• And we propose a self-training strategy to iteratively im-
prove the HTR performance when using the alignment

1https : / / github . com / bullinger - digital /
bullinger-korpus-tei

method.
The code for the alignment as well as the data to bench-

mark our algorithm will be publicly available. The remain-
der of the paper is structured as follows: Section 2 describes
related work in the domain of alignment and self-training
approaches. Section 3 explains our methodology, the eval-
uation protocol is reported in Section 4, followed by the
results in Section 5. We conclude our paper in Section 6.

2. Related Work

This section briefly describes related work in the general do-
main of computer vision, followed by historical document
analysis.

2.1. Alignment in computer vision
Image-text alignment in computer vision refers to the pro-
cess of establishing meaningful correspondences between
visual data and textual descriptions, e.g., in the context of
sign language recognition, where sequences of video frames
are aligned with gloss-level transcriptions [11, 14, 25],
aligning videos with textual descriptions [20, 23, 24], or 3D
scenes with textual descriptions [26]. The alignment of the
visual and the textual modalities serves for automatic tran-
scription, automatic captioning, and cross-modal retrieval,
e.g., retrieving a video based on a text or vice versa. Align-
ment results can also be used for self-learning, using the
aligned pseudo-labels for supervised fine-tuning.

2.2. Alignment for historical manuscripts
For historical manuscripts, Sudholt and Fink proposed a
word-level alignment between images and text with the
PHOCNet [21], a CNN-based network that estimates a
pyramidal histogram of characters [1] representation of text
labels. It allows to retrieve keyword images from the (word-
segmented) manuscripts using both text queries and image
queries.

Most alignment methods in the literature operate at the
line level, aiming at simplifying the navigation in digital
libraries (switching easily between the transcription and the
original handwriting images) and, more commonly, with the
goal of leveraging existing human transcriptions of ancient
documents to extract line-level pseudo-labels for training
HTR systems. The methods differ in the optical models
they use and the algorithms considered for alignment, which
typically include some form of dynamic programming.

Early work includes the alignment method proposed by
A. Fischer et al. [6] for historical Latin manuscripts, which
is based on character hidden Markov models (HMMs) and
Viterbi decoding for alignment. Spelling variants are in-
cluded in the models and it is demonstrated that the align-
ment task can be solved with high accuracy even for weakly
trained models using only few annotated learning samples.

2

https://github.com/bullinger-digital/bullinger-korpus-tei
https://github.com/bullinger-digital/bullinger-korpus-tei

More recently, Ezra et al. [4] proposed an alignment
method for fragments of the Dead Sea Scrolls. After line
segmentation, a CNN-RNN based HTR system is used
to produce an automatic recognition result, which is then
aligned with the transcription using string edit distance. In
the work of P. Torras et al. [22], a Seq2Seq model is used
to align historical handwritten ciphers based on attention
mechanisms. The approach of B. Madi et al. [12] targets the
task of image-image alignment between Arabic manuscripts
that contain similar texts. YOLO object detection is con-
sidered for spotting subwords, subword similarity is estab-
lished by means of siamese CNN, and alignment is achieved
using a longest common subsequence algorithm. YOLO
object detection is also considered in the work of A. Scius-
Bertrand et al. [18] for aligning columns of ancient Viet-
namese manuscripts with their transcription, utilizing clus-
tering algorithms for the alignment. An interesting aspect
of their work is that neither page segmentation nor human-
annotated learning samples are needed for aligning the lo-
gographic characters.

In this paper, we introduce a line-level alignment method
that is based on a deep CNN-RNN with CTC loss. In-
stead of relying on the recognition result as basis for the
alignment, as in [4], we leverage the character CTC pos-
terior probabilities, similar to the character HMM likeli-
hoods in [6], and perform a Viterbi-like dynamic program-
ming to find the optimal correspondence between the char-
acter probabilities and the transcription. The CTC character
probabilities can be seen as a preliminary character-level
image-text alignment performed by the CNN-RNN, which
is then used for aligning the transcription of entire letters,
consisting of multiple scanned pages.

3. Methodology
In this section, we present our methodology, starting with
the manual annotation and correction of two subsets of the
Bullinger collection2. Then, we present the CTC align-
ment algorithm proposed in our work, followed by the ap-
proaches used for HTR. Lastly, the self-training procedure
is explained.

3.1. Bullinger Dataset
The Bullinger dataset [19] is a historical manuscript col-
lection consisting of 3,622 letters written by 306 authors,
drawn from the larger correspondence of Swiss reformer
Heinrich Bullinger (1504-–1575). The dataset reflects the
linguistic diversity of the period, with letters primarily writ-
ten in Latin and premodern German, alongside passages in
Greek, Italian, French, and Hebrew. Transcriptions are not
strictly character-accurate, as abbreviations are often ex-
panded, and the handwriting - particularly that of Bullinger

2https://www.bullinger-digital.ch/index.html

Letters Pages Lines

Subset 1 20 50 902
Subset 2 49 50 1486

Total 69 100 2388

Table 1. Statistics of the manually corrected dataset.

himself — can be highly variable and difficult to read, pos-
ing challenges for both human annotators and HTR systems.
Additionally, due to the automated alignment, done with the
Transkribus platform [15], errors arise at the beginning and
end of text lines, particularly in the presence of word breaks.

Therefore, we create a manually annotated and corrected
dataset of 100 pages, consisting of 2,388 text lines, split
into two subsets. The first subset contains transcriptions
made by historians, reflecting how they interpret the text.
These transcriptions are written as continuous paragraphs
rather than line by line; hyphenated words at line breaks
in the images are not preserved. Written abbreviations are
expanded, and punctuation is added. This subset also rep-
resents the workflow of the annotations provided in the
Bullinger dataset [19].

The second subset contains what we call diplomatic tran-
scriptions, meaning they closely reflect the original line-
by-line content of the images. Hyphenated words are pre-
served, abbreviations are kept as written, and no modern
punctuation is added. The dataset statistics are shown in
Table 1.

3.2. Handwritten Text Recognition
We use three different models for HTR: HTRFlor [3] (820k
parameters), PyLaia [16] (6.4M), and the method by Retsi-
nas et al. [17] (7.4M). While the use of HTRFlor and Py-
Laia follows the approach of the original paper [19], the
method by Retsinas et al. presents a trade-off between
training speed and number of parameters. It retains image
aspect ratio, replaces max-pooling with column-wise con-
catenation to reduce parameters, and introduces a parallel
shortcut branch with a 1D convolution and CTC [8] loss to
guide the CNN backbone toward learning more discrimina-
tive features. The general structure is a CNN-based back-
bone, followed by either a block of BiLSTM [9] (Retsinas et
al., PyLaia) or BGRU [2] (HTRFlor) layers. For our work,
we follow the default architectures and training strategies
proposed by the authors. The architectures of our models
are shown in the supplementary material (Figure 9).

3.3. CTC Alignment
The proposed image-text alignment method is inspired by
the NNTP token passing algorithm introduced in [5] for
HTR using very large vocabularies. Our method is de-
signed for HTR systems that are based on the CTC loss

3

https://www.bullinger-digital.ch/index.html

function [8]. Such systems provide estimated character pos-
terior probabilities P (ci|tj) for all characters ci ∈ A of the
alphabet A, including the special ε character indicating “no
character”, for all time steps tj when processing the convo-
lutional features of text line images using recurrent neural
networks (LSTM or GRU, respectively). While the proba-
bilities are estimated bi-directionally from left-to-right and
from right-to-left, the time axis corresponds to the natural
reading order of the handwriting.

Problem statement The alignment algorithm receives
two inputs: the machine-readable transcription of the let-
ter, and the character posterior probabilities for all text line
images of the letter. The goal is to insert newline charac-
ters at the correct position within the transcription, such that
it is aligned with the text line images, resulting in labeled
samples for training HTR systems. For each aligned text
line, the average character probability, as well as the aver-
age probability over the first six and the last six characters
is returned as measures of confidence.

Note that in this problem statement, the transcription it-
self is not changed, i.e. it is not possible to skip words,
change or add characters, swap parts of the text, etc. How-
ever, if there are parts of the image that are missing in
the transcription, the alignment can insert multiple newline
characters in order to create a gap in the aligned transcrip-
tion.

Alignment process The alignment proceeds in three
steps. In the first step, both the letter transcription and
the character posterior probabilities are preprocessed. Af-
ter discarding all newline characters from the letter tran-
scription, following the principle of CTC, the transcription
is extended to a linear, Finite State Automaton (FSA) with
skip connections that also include the ε character, as illus-
trated in Figure 2. Note that there is no direct connection
between two identical characters. At least one ε needs to be
visited between them, such that a character transition can
be detected. Regarding the character probabilities, they are
concatenated over all lines and pages of a handwritten let-
ter, in order to form a single probability sequence for the
entire letter. Afterwards, we compress the sequence by
means of a threshold θε, such that successive time steps
with P (ε|tj) > θε are compressed into a single time step
with probability

P (ε|tab) =
b∏

j=a

P (ε|tj) ,

and similar for all other characters of the alphabet. This
ε compression is inspired by the observation that for CTC,
the ε character is almost always “active” with nearly 100%
probability, interrupted only sporadically by time steps, in

ε f ε o ε o ε sp ε

P(ε|t) P(f|t) P(ε|t)

Figure 2. FSA representing the transcription “foo ” after ε exten-
sion (‘sp’ is the whitespace character). Each character state emits
posterior probabilities with respect to the time t. There are two ini-
tial states (diagonal arrows) and two final states (double circles).

which standard characters have a probability significantly
larger than 0%.

In the second, main step, dynamic programming is used
to find the optimal character sequence c∗ = c∗1, . . . , c

∗
T with

c∗j ∈ A, and T the length of the (ε-compressed) letter prob-
ability sequence, such that

c∗ = argmax
c1,...,cT∈CFSA

T∏
j=1

P (cj |tj) ,

where CFSA contains all valid character sequences accord-
ing to the FSA of the text transcription (see Figure 2). A
schema of the dynamic programming procedure is illus-
trated in Figure 3, highlighting the maximum probability
step for standard characters (3 possible predecessors) and
the ε character (2 possible predecessors) according to the
FSA. To avoid numerical problems with small probabilities,
the algorithm considers sums of logarithms. For increased
memory efficiency, token passing is applied, i.e. only one
column is kept in memory in form of the FSA and starting
from the initial states, tokens are passed to valid successors
in the automaton at each time step. At time T , the tokens in
the final states hold the optimal solution.

In the third and final step, newline characters are inserted
in the transcription according to the line break positions of
the text line images in the optimal character sequence c∗.
Furthermore, the two confidence measures

γ =
1

e− s

e∑
j=s

P (c∗j |tj) ,

γ6 =
1

6

s+6∑
j=s

P (c∗j |tj) +
1

6

e∑
j=e−6

P (c∗j |tj) ,

are calculated, where ts is the starting time and te is the
ending time of the aligned text line. They reflect the quality
of the aligned learning samples with respect to the average
character probability, focusing on the beginning and the end
of the line in the case of γ6. For small text lines with less
than 12 characters, γ6 is set to zero.

3.4. Self-Training
We can now address alignment errors by implementing the
self-training pipeline. The procedure begins by extracting

4

t1 t2 …

Line image 1

Page image 1

…

…

Scanned letter

P

ε
a

ε
c

…

Le
tte

r t
ra

ns
cr

ip
tio

n

ε

Figure 3. Schema of the dynamic programming algorithm pro-
posed for letter transcription alignment based on CTC character
probabilities. Red arrows illustrate the maximum probability step
for standard characters, blue arrows for the ε character.

the probabilities for P (ci|tj), ci ∈ CFSA for each timestep
from the three different HTR models. These probabilities
are combined with expert-provided letter transcriptions that
lack layout information. Using these inputs, the CTC align-
ment algorithm performs sequence alignment by inserting
line breaks to the corresponding characters in the transcrip-
tion.

Following alignment, we generate training subsets by ap-
plying filtering based on γ6, the confidence of the alignment
for the first and last six characters. For example, we retain
only samples that meet a minimum average character con-
fidence for γ6. The filtered subsets of the Bullinger’s train-
ing and validation set are subsequently used to finetune the
HTR models. This adaptation is aimed to improve the HTR
performance, in particular when alignment issues, such as
hyphenation, are occuring. We show that the procedure can
be applied iteratively - improved model predictions are used
to generate refined alignments, which in turn support further
finetuning.

4. Evaluation

4.1. Setup
Data We use the original Bullinger dataset [19] and re-
move the letters which occur in our contributed test set, re-
sulting in 108.7k lines for training (instead of 109.6k). The
alphabet to generate CFSA consists of the 79 symbols of the
training set (including the ε of the CTC).

Training and Finetuning We use the defaults parameters
for training and model architecture of the three frameworks.
For finetuning, we decrease the number of epochs to 10%
of the initial training phase and lower the learning rate by
0.01. In both phases, a learning rate scheduler is used, and
all of our models converge.

CTC Alignment The threshold for the θε is set to 0.99 in
our experiments. If not stated otherwise, we use the PyLaia
model for HTR and finetune it on the alignments filtered
with γ6 > 0.5.

4.2. Metrics
In the following, we briefly describe the metrics used for
evaluation.

Line-level Accuracy To quantitatively evaluate the qual-
ity of predicted text lines against the ground truth in our
handwritten text recognition system, we adopt a line-level
accuracy metric. For each letter i (note that a letter usu-
ally consists of more than one page), the transcription is
segmented into lines by our algorithm and compared to the
corresponding ground truth lines in the same order. Let the
ground truth lines be Gi =

(
g
(1)
i , g

(2)
i , . . . , g

(Li)
i

)
, where Li

is the number of ground truth lines, and the predicted lines
be Pi =

(
p
(1)
i , p

(2)
i , . . . , p

(Mi)
i

)
, where Mi is the number of

predicted lines. We define a per-line match indicator

δ
(j)
i =

{
1 if p(j)i = g

(j)
i

0 otherwise
for j = 1, . . . ,min(Li,Mi).

(1)
The number of correctly matched lines for sample i is

then

mi =

min(Li,Mi)∑
j=1

δ
(j)
i . (2)

Finally, the overall line-level accuracy across the dataset of
N samples is computed as the total number of correctly
matched lines normalized by the total number of ground
truth lines.

HTR For evaluating the performance of the HTR mod-
els, we provide Character Error Rate (CER) and Word Er-
ror Rate (WER) metrics. Additionally, we report the CER
metric for the first and last n characters of a line, denoted
as CERn, to specifically evaluate the influence of the text
alignment on the HTR performance.

5. Results
In this part, we present the main results of the proposed
methodology.

5.1. Baseline Results for Bullinger
First, we evaluate our three HTR models on the Bullinger
dataset [19] and compare it with the results provided in the
original work, shown in Table 2. The worst model is HTR-
Flor (with the fewest number of parameters), followed by
Retsinas et al. and PyLaia, that performs best with 8.9 %
/ 9.9 % CER on the frequent/nonfrequent subset of the

5

Frequent Nonfrequent
CER WER CER WER

HTRFlor [3] 11.8 43.7 12.8 46.4
PyLaia [16] 8.9 31.5 9.9 35.0
Retsinas et al. [17] 9.0 29.6 10.3 33.7

Baseline [19] 8.4 29.6 9.9 34.4

Table 2. HTR performance on the two writer subsets of the
Bullinger dataset [19].

Subset 1 Subset 2
CER WER CER WER

HTRFlor [3] 15.7 52.4 22.8 64.9
PyLaia [16] 7.6 28.9 18.6 54.0
Retsinas et al. [17] 13.0 40.1 21.7 58.6

Table 3. HTR performance on the 100 manually corrected pages.

Subset 1 Subset 2

HTRFlor [3] 86.1 79.7
PyLaia [16] 86.1 77.3
Retsinas et al. [17] 81.5 73.0

Table 4. Line-level alignment accuracy.

dataset. Scius-Bertrand et al. [19] also provide the bina-
rized version of the line images to the input (resulting in
a four channel image), that might explain the small gap in
performance.

Next, we evaluate the same models as in Table 2 on our
manually corrected dataset, which consists of two subsets
of 50 pages each. The results are presented in Table 3. Py-
Laia outperforms the other two approaches by 5.4/8.1% and
3.1/4.2% CER on the two subsets, respectively. However,
the performance on Subset 2 is consistently worse across all
approaches, which may be due to differences in annotation
style. The models were trained on Annotation Set 1, where
abbreviations were expanded and punctuation was added.
As a result, the models tend to reproduce this normalized
format rather than the original transcription as it appears in
Subset 2.

5.2. Text Alignment
We evaluate the toking passing algorithm by reporting the
line-level accuracy on both subsets in Table 4. All models
achieve accuracies above 80 and 70%, resp., on both of our
subsets. Similarly to the HTR performance, the results are
worse for Subset 2. Interestingly, the smallest model, HTR-
Flor, outperforms PyLaia, the best model in terms of CER,
on Subset 2. We will evaluate the influence of the model
size in our ablation study.

20 40 60 80
0

0.2
0.4
0.6
0.8
1

A
cc

ur
ac

y

Subset 1

20 40 60 80
0

0.2
0.4
0.6
0.8
1

Confidence γ6

A
cc

ur
ac

y

Subset 2

HTRFlor
PyLaia
Retsinas et al.

Figure 4. Confidence values of the first and last six characters vs.
line-level accuracy. Higher confidence values correspond to higher
line-level accuracies.

In Figure 4, we show the line-level accuracy for each
approach depending on the confidence of the first/last six
characters on our test set. We notice that higher confidence
scores also correspond to higher line-level accuracies, with
Retsinas for Subset 2 being the only outlier for higher confi-
dence thresholds, explaining the lower accuracy in Table 4.

TLine T ∗
L TL ε d in s

HTRFlor [3] 256 11242 6897 1.63 3.54
PyLaia [16] 214 8915 5643 1.58 2.70
Retsinas et al. [17] 126 5759 4840 1.19 2.28

Table 5. Average length of the line (TLine) and the letter probabil-
ity sequence (T ∗

L /TL after/before the compression), the achieved
compression ratio ε when applying thresholding with θε = 0.99
and the average run-time per letter d for different recognition mod-
els.

5.3. Computational Analysis
We analyze the computational differences regarding the
alignment between the models in Table 5. First, the number
of time steps per algorithm varies: HTRFlor uses 256 steps
per line, while Retsinas et al. use 128. However, they pro-
pose inserting whitespace at the beginning and end of each
line during training (removed at inference), effectively re-
sulting in 126 steps per line. PyLaia applies adaptive pool-
ing, with an average of 214 steps per line.

Interestingly, we observe that ε-compression reduces the
effective sequence length per letter more efficiently for
HTRFlor and PyLaia, a result of the sparsity of the CTC

6

0.8

0.9

1

Relative CER

0.8

0.9

1

Relative WER

0.4

0.7

1

Relative CER6

0 20 40 60 80
0.9

0.95

1

γ6 > x
0 20 40 60 80

0.9

0.95

1

γ6 > x
0 20 40 60 80

0.4

0.7

1

γ6 > x

Su
bs

et
1

Su
bs

et
2

HTRFlor PyLaia Retsinas

Figure 5. Finetuning the models on the aligned training set for different thresholds γ6. (a) Normalized CER/WER improvements for the
models. The best γ6 is a trade off between training data used and confidence (30 – 60%), while PyLaia shows the largest improvement.

probabilities (”peaks”) and the relative difference of the
steps per line. Overall, we have an average run-time for an
alignment of a letter (consisting of 34.6 lines on average) of
2.28 - 3.54s, depending on the algorithm. We conclude that
the CTC alignment algorithm can even be applied to longer
sequences (or HTR models with a larger number of steps)
by using the proposed ε-compression.

5.4. Self-Training
After the text alignment, we run the algorithm on the train-
ing set of the Bullinger dataset and create subsets to fine-
tune our HTR models. Firstly, we evaluate the influence of
the confidence threshold. The relative improvements on the
baseline CER and WER metrics are shown in Figure 5. We
notice that the improvement for PyLaia is the largest (which
can particularly be observed when evaluating the CER6,
where the performance improves by 50%), and the improve-
ment is more pronounced for Subset 1. In general, all mod-
els benefit from thresholding, but the gains vary depending
on the model and metric. PyLaia exhibits the strongest sen-
sitivity to confidence filtering, while HTRFlor and Retsinas
show more moderate but consistent trends.

We observe that the optimal threshold is a trade-off be-
tween data quantity and quality, as the highest improve-
ments are obtained when considering samples with a con-
fidence higher than 30–60%, depending on the approach
and subset. This is also in line with the findings by Jungo
et al. [10]. When increasing the confidence threshold, the
number of training lines decreases significantly (see Fig-
ure 10 in the supplementary), which can negatively affect
the finetuning process if too few samples are considered for
training. On the other hand, lower thresholds allow for more
but also faulty data (see Figure 4).

Table 6 presents the absolute CER and WER scores for
each model when finetuned using a confidence threshold of
50%. Consistent with the trends observed in Figure 5, Py-

Laia achieves the best overall performance across both sub-
sets and metrics (with an improvement of 1.1% on the CER
on Subset 1). However, our algorithm and finetuning strat-
egy improves the results of all three models. We also show
qualitative results in Figure 6, where we observe that the
finetuned model performs better at the beginning and the
end of the line, while the baseline tends to drop the first/last
word of the line.

GT status sit Coloniensium nonnulla ex hoc libello cognoscetis ex
FT status sit Coloniensium nonnila ex hoc libello cognoscetis ex

BL sit Coloviensium nomnia ex hoc libello cognoscetisex

GT culorum obliuio et lorum & usum invenerit prouerbio. Redduo
FT clorum oblivio et locum et usum invenerit proverbio. Reddum

BL oblivio et locum et usum invenerit proverbio. Reddum

GT Es wayr sye, das vnser kunning in Inglandt gestorben
FT es waist sye, das unser kunning in iuglandt gestothen
BL es wait sye, das unser kunning in Inglandt gestorben

Figure 6. Qualitative comparison of the finetuned (FT) and the
baseline (BL) PyLaia [16] model. Red and green words highlight
differences that are only correct in one of the predictions.

Subset 1 Subset 2
CER WER CER WER

HTRFlor [3] 14.8 ↓0.9 51.2 ↓1.2 22.2 ↓0.6 64.4 ↓0.5
PyLaia [16] 6.5 ↓1.1 25.4 ↓3.5 17.9 ↓0.7 52.2 ↓1.8
Retsinas [17] 12.2 ↓0.8 38.8 ↓1.3 21.3 ↓0.4 58.2 ↓0.4

Table 6. Absolute finetuning improvements for a threshold of
50%.

7

Line-level Accuracy Table 7 reports the line-level align-
ment accuracy after finetuning the HTR models. Over-
all, the improvements in transcription quality lead to bet-
ter alignment accuracy for most models. HTRFlor shows
the highest post-finetuning accuracy on both subsets, with
a gain of 3.4% on Subset 1. Retsinas et al. also improves
across both subsets, though to a lesser extent. Interestingly,
PyLaia shows a slight drop in accuracy on Subset 1, likely
due to a saturation effect, as its pre-finetuning performance
on Subset 1 is already very high. This suggests that for
stronger models, further finetuning with filtered data may
not always translate into better alignment, especially when
initial transcriptions are already of high quality in terms of
CER. With the improved alignment accuracy, the models
can then be finetuned on the enhanced training data again.

Subset 1 Subset 2

HTRFlor [3] 89.5 ↑3.4 81.0 ↑1.3
PyLaia [16] 85.6 ↓0.5 78.9 ↑1.6
Retsinas et al. [17] 82.9 ↑1.4 73.5 ↑0.6

Table 7. Line-level accuracy of the alignment after finetuning the
HTR models.

0 0.2 0.4 0.6 0.8 1

40

60

80

100

Normalized training epochs

L
in

e-
le

ve
lA

cc
ur

ac
y

Subset 1 Subset 2

15

50

100

200

V
al

id
at

io
n

lo
ss

Figure 7. Line-level accuracy during training

5.5. Weakly Trained Model
Next, we examine the influence of the training steps on
the alignment accuracy to check whether a weakly trained
model has an improved benefit from the alignment since
it has a minor training on the faulty data. The results are
shown in Figure 7. The model is trained for 225 epochs,
and the probabilities of the weakly trained model do result
in a better line-level accuracy – 88.5% vs. 86.1% on Sub-
set 1 and 89.1% vs. 77.3% on Subset 2, both reached after
15 epochs of training. We also find that the line-level accu-
racy does converge after approximately half of the training
time in our case. This result highlights that the self-training
is more beneficial when the model is trained for a reduced
amount of optimization steps, making our approach more
efficient with respect to time.

1.3M 4.9M 6.4M

23.3

18.3

7.6

21.6

13.9

6.5

Subset 1

1.3M 4.9M 6.4M

24.1 23.5

18.6

23.8
21.6

17.9

Subset 2

Figure 8. Influence of the model size before and after finetun-
ing on the CER.

5.6. Model size

We evaluate the impact of model size by simplifying the
PyLaia architecture; details of the reduced models are in
the supplementary. The small model uses a 2-layer RNN
with 128 units, while the mid and large models use 3 layers
with 256 units. As shown in Figure 8, larger models lead to
lower CERs both before and after fine-tuning. On Subset 1,
the CER drops from 23.3% to 7.6% as model size increases
from 1.3M to 6.4M parameters (6.5% after fine-tuning). A
similar trend is observed on Subset 2, where CER decreases
from 24.1% to 18.6% (17.9% after fine-tuning).

6. Conclusion

This work introduced a self-training method based on a
CTC alignment algorithm to improve annotation quality
within the Bullinger dataset. We showed improved per-
formance of three different HTR approaches by finetuning
on aligned subsets of the initial training data. Our algo-
rithm is efficient in terms of computational complexity, even
for longer sequences. Additionally, results indicated that
weakly trained models are more suitable for self-training
in terms of line-level accuracy, making an iterative process
feasible. Lastly, we provided 100 annotated and manually
corrected pages of the Bullinger dataset for further research.

For future work, this paper is the first step toward acquir-
ing annotations close to the original visual text. We plan to
extend the algorithm to skip words, enabling detection of
missing words or abbreviations, common in expert annota-
tions of historical manuscripts. This extension would help
obtain character-accurate annotations of the Bullinger data
collection to further improve HTR performance.

Acknowledgements
This work has been supported by the Hasler Foundation, Switzer-
land. We thank the contributors of the Bullinger Digital project, in
particular Tobias Hodel, Anna Janka, Raphael Müller, Peter Rech-
steiner, Patricia Scheurer, David Selim Schoch, Raphael Schwitter,
Christian Sieber, Phillip Ströbel, Martin Volk, and Jonas Widmer
for their contributions to the dataset and ground truth creation.

8

References
[1] Jon Almazán, Albert Gordo, Alicia Fornés, and Ernest Val-

veny. Word spotting and recognition with embedded at-
tributes. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 36(12):2552–2566, 2014. 2

[2] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau,
and Yoshua Bengio. On the properties of neural machine
translation: Encoder–decoder approaches. In Proceedings of
SSST-8, Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation. Association for Computa-
tional Linguistics, 2014. 3

[3] Arthur Flor de Sousa Neto, Byron Leite Dantas Bezerra, Ale-
jandro Héctor Toselli, and Estanislau Baptista Lima. Htr-
flor++: A handwritten text recognition system based on a
pipeline of optical and language models. In DocEng ’20,
page 1–4. ACM, 2020. 3, 6, 7, 8, 11, 12

[4] Daniel Stökl Ben Ezra, Bronson Brown-DeVost, Nachum
Dershowitz, Alexey Pechorin, and Benjamin Kiessling.
Transcription alignment for highly fragmentary historical
manuscripts: The dead sea scrolls. In 2020 17th Interna-
tional Conference on Frontiers in Handwriting Recognition
(ICFHR), pages 361–366. IEEE, 2020. 3

[5] Andreas Fischer. Handwriting Recognition in Historical
Documents. Ph.d. dissertation, University of Bern, 2012. 3

[6] Andreas Fischer, Volkmar Frinken, Alicia Fornés, and Horst
Bunke. Transcription alignment of latin manuscripts us-
ing hidden markov models. In Proceedings of the 2011
Workshop on Historical Document Imaging and Processing,
pages 29–36, 2011. 2, 3

[7] Andreas Fischer, Marcus Liwicki, and Rolf Ingold. Hand-
written historical document analysis, recognition, and re-
trieval - state of the art and future trends. World Scientific
Publishing, Singapore, Singapore, 2020. 1

[8] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural
networks. In Proceedings of the 23rd international confer-
ence on Machine learning - ICML ’06, page 369–376. ACM
Press, 2006. 2, 3, 4

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997. 3

[10] Michael Jungo, Lars Vögtlin, Atefeh Fakhari, Nathan Weg-
mann, Rolf Ingold, Andreas Fischer, and Anna Scius-
Bertrand. Impact of the ground truth quality for handwriting
recognition. In Proceedings of the 12th International Sympo-
sium on Information and Communication Technology, page
135–140. ACM, 2023. 1, 2, 7

[11] Ahmet Alp Kındıroglu, Oğulcan Özdemir, and Lale Akarun.
Aligning accumulative representations for sign language
recognition. Machine Vision and Applications, 34(1):12,
2023. 2

[12] Boraq Madi, Ahmad Droby, and Jihad El-Sana. Textline
alignment on the image domain. International Journal on
Document Analysis and Recognition (IJDAR), 25(4):415–
427, 2022. 3

[13] Martin Mayr, Julian Krenz, Katharina Neumeier, Anna Bub,
Simon Bürcky, Nina Brolich, Klaus Herbers, Mechthild

Habermann, Peter Fleischmann, Andreas Maier, and Vincent
Christlein. Nuremberg letterbooks: A multi-transcriptional
dataset of early 15th century manuscripts for document anal-
ysis. Scientific Data, 12(1), 2025. 1

[14] Yuecong Min, Aiming Hao, Xiujuan Chai, and Xilin Chen.
Visual alignment constraint for continuous sign language
recognition. In proceedings of the IEEE/CVF international
conference on computer vision, pages 11542–11551, 2021. 2

[15] Guenter Muehlberger, Louise Seaward, Melissa Terras, Sofia
Ares Oliveira, Vicente Bosch, Maximilian Bryan, Sebas-
tian Colutto, Hervé Déjean, Markus Diem, Stefan Fiel,
Basilis Gatos, Albert Greinoecker, Tobias Grüning, Guenter
Hackl, Vili Haukkovaara, Gerhard Heyer, Lauri Hirvonen,
Tobias Hodel, Matti Jokinen, Philip Kahle, Mario Kallio,
Frederic Kaplan, Florian Kleber, Roger Labahn, Eva Maria
Lang, Sören Laube, Gundram Leifert, Georgios Louloudis,
Rory McNicholl, Jean-Luc Meunier, Johannes Michael,
Elena Mühlbauer, Nathanael Philipp, Ioannis Pratikakis,
Joan Puigcerver Pérez, Hannelore Putz, George Retsinas,
Verónica Romero, Robert Sablatnig, Joan Andreu Sánchez,
Philip Schofield, Giorgos Sfikas, Christian Sieber, Niko-
laos Stamatopoulos, Tobias Strauß, Tamara Terbul, Alejan-
dro Héctor Toselli, Berthold Ulreich, Mauricio Villegas, En-
rique Vidal, Johanna Walcher, Max Weidemann, Herbert
Wurster, and Konstantinos Zagoris. Transforming scholar-
ship in the archives through handwritten text recognition:
Transkribus as a case study. Journal of Documentation, 75
(5):954–976, 2019. 2, 3

[16] Joan Puigcerver. Are multidimensional recurrent layers re-
ally necessary for handwritten text recognition? In 2017
14th IAPR International Conference on Document Analysis
and Recognition (ICDAR), pages 67–72, 2017. 3, 6, 7, 8, 11,
12

[17] George Retsinas, Giorgos Sfikas, Basilis Gatos, and
Christophoros Nikou. Best practices for a handwritten text
recognition system. In Document Analysis Systems, page
247–259, 2022. 3, 6, 7, 8, 11, 12

[18] Anna Scius-Bertrand, Michael Jungo, Beat Wolf, Andreas
Fischer, and Marc Bui. Transcription alignment of historical
vietnamese manuscripts without human-annotated learning
samples. Applied Sciences, 11(11):4894, 2021. 3

[19] Anna Scius-Bertrand, Phillip Ströbel, Martin Volk, Tobias
Hodel, and Andreas Fischer. The bullinger dataset: A writer
adaptation challenge. In Document Analysis and Recognition
- ICDAR 2023 - 17th International Conference, San José,
CA, USA, August 21-26, 2023, Proceedings, Part I, pages
397–410, 2023. 1, 2, 3, 5, 6

[20] Xiujun Shu, Wei Wen, Haoqian Wu, Keyu Chen, Yiran Song,
Ruizhi Qiao, Bo Ren, and Xiao Wang. See finer, see more:
Implicit modality alignment for text-based person retrieval.
In European Conference on Computer Vision, pages 624–
641. Springer, 2022. 2

[21] Sebastian Sudholt and Gernot A. Fink. Evaluating Word
String Embeddings and Loss Functions for CNN-based
Word Spotting. In Proc. Int. Conf. on Document Analysis
and Recognition, 2017. 2

[22] Pau Torras, Mohamed Ali Souibgui, Jialuo Chen, and Alicia
Fornés. A transcription is all you need: Learning to align

9

through attention. In Document Analysis and Recognition–
ICDAR 2021 Workshops: Lausanne, Switzerland, Septem-
ber 5–10, 2021, Proceedings, Part I 16, pages 141–146.
Springer, 2021. 3

[23] Ziyang Wang, Yi-Lin Sung, Feng Cheng, Gedas Bertasius,
and Mohit Bansal. Unified coarse-to-fine alignment for
video-text retrieval. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2816–2827,
2023. 2

[24] Jianwei Yang, Yonatan Bisk, and Jianfeng Gao. Taco:
Token-aware cascade contrastive learning for video-text
alignment. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 11562–11572, 2021.
2

[25] Jiangbin Zheng, Yile Wang, Cheng Tan, Siyuan Li, Ge
Wang, Jun Xia, Yidong Chen, and Stan Z Li. Cvt-slr:
Contrastive visual-textual transformation for sign language
recognition with variational alignment. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 23141–23150, 2023. 2

[26] Ziyu Zhu, Xiaojian Ma, Yixin Chen, Zhidong Deng, Siyuan
Huang, and Qing Li. 3d-vista: Pre-trained transformer for 3d
vision and text alignment. In 2023 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 2899–2909.
IEEE Computer Society, 2023. 2

10

7. Model architectures
Figure 9 presents the default architectural configurations of the
three HTR systems evaluated in this work: Retsinas et al. [17],
PyLaia [16], and HTRFlor [3]. The model proposed by Recsinas
et al. (Figure 9a) employs a deep residual convolutional neural net-
work with multiple ResBlocks and intermediate max pooling lay-
ers, followed by a column-wise max pooling operation. Sequence
modeling is performed by a single BiLSTM layer with 256 hidden
units, followed by a dense output layer. Additionally, the architec-
ture incorporates a CTC shortcut path consisting of a 1 × 1 con-
volution for intermediate supervision. PyLaia (Figure 9b) adopts
a relatively shallow CNN feature extractor composed of five con-
volutional layers with batch normalization and LeakyReLU acti-
vations. This is followed by a stack of five BiLSTM layers, each
with 256 hidden units per direction. The final output is produced
by a softmax layer applied after a dense transformation.

HTRFlor (Figure 9c) is based on gated convolutions and uses
PReLU activations combined with Batch Renormalization and
MaxNorm regularization. The encoder consists of six gated con-
volutional blocks with increasing filter sizes, interleaved with
dropout and normalization layers. Max pooling and tiling are ap-
plied before the recurrent decoder, which comprises two stacked
BGU layers, each with 128 hidden units. The final dense layer
maps the outputs to character probabilities, followed by a softmax
operation. In our experiments, we use the unmodified, default ver-
sions of all three architectures as provided in their respective im-
plementations.

8. PyLaia model architectures
In Table 8, the detailed architectures of the PyLaia model for the
ablation study on the model size are reported. Large corresponds
to the default architecture and is also the default provided in the
PyLaia Framework. The main difference between the mid and
large model is the reduced size of the CNN backbone (3 vs. 4),
while the small and mid model differ mainly in terms of the re-
duced size of the RNN.

8.1. Subset size for finetuning
Figure 10 illustrates the number of training samples retained for
finetuning at various confidence thresholds. As the confidence
threshold increases from 0 to 90, the number of samples decreases
across all three models: HTRFlor, PyLaia, and Retsinas. HTR-
Flor consistently maintains a higher number of samples compared
to the other models at most thresholds, while Retsinas shows the
steepest decline. This shows how stricter confidence criteria re-
duce the training dataset size, which impacts the model finetuning
by reducing the amount of faulty data (while also having less data).

Parameter Small Mid Large

CNN
Features [16, 24, 48] [16, 24, 36] [16, 16, 32, 32]
Kernel Size [3, 3, 3] [3, 3, 3] [3, 3, 3, 3]
Stride [1, 1, 1] [1, 1, 1] [1, 1, 1, 1]
Dilation [1, 1, 1] [1, 1, 1] [1, 1, 1, 1]
Pool Size [2, 2, 2] [2, 2, 2] [2, 2, 2, 0]
Dropout 0 0 0
Activation LeakyReLU LeakyReLU LeakyReLU

RNN
Layers 2 3 3
Units 128 256 256
Type LSTM LSTM LSTM
Dropout 0.5 0.5 0.5

Linear
Dropout 0.5 0.5 0.5

Table 8. Comparison of Small (1.3M), Mid (4.9M), and Large
(6.4M) PyLaia model configurations. (T = True, F = False)

11

Conv 7 × 7 (32 filters)

MaxPool, 2 × 2

ResBlock 3 × 3 (64 filters)

MaxPool, 2 × 2

2 ×

ResBlock 3 × 3 (128 filters)

MaxPool, 2 × 2

3 ×

ResBlock 3 × 3 (256 filters)2 ×

Column MaxPool

BiLSTM, 256

Dense

3 × Conv 1 x 1
(Nc filters)

1 ×

CTC Shortcut

(a) Retsinas et al. [17]

Conv 3x3 (16 filters)
BN + LeakyReLU

MaxPooling 2x2

Conv 3x3 (32 filters)
BN + LeakyReLU

MaxPooling 2x2

Dropout + Conv 3x3 (48 filters)
BN + LeakyReLU

MaxPooling 2x2

Dropout + Conv 3x3 (64 filters)
BN + LeakyReLU

Dropout + Conv 3x3 (80 filters)
BN + LeakyReLU

Dropout + BLSTM (256x2)

Dropout + BLSTM (256x2)

Dropout + BLSTM (256x2)

Dropout + BLSTM (256x2)

Dropout + BLSTM (256x2)

Dropout + Dense + Softmax

(b) PyLaia [16]

Conv 3x3 (2x2) (16 filters) + PReLU + BR

Gated Conv 3x3 (16 filters)

Conv 3x3 (32 filters) + PReLU + BR

Gated Conv 3x3 (32 filters)

Conv 2x4 (2x4) (40 filters) + PReLU + BR

Gated Conv 3x3 (40 filters)
MaxNorm + Dropout

Conv 3x3 (48 filters) + PReLU + BR

Gated Conv 3x3 (48 filters)
MaxNorm + Dropout

Conv 2x4 (2x4) (56 filters) + PReLU + BR

Gated Conv 3x3 (56 filters)
MaxNorm + Dropout

Conv 3x3 (64 filters) + PReLU + BR

MaxPooling
1x2 + Tiling

Dropout +
BGRU (128x2)

Dense (256)

Dropout +
BGRU (128x2)

Dense + Softmax

(c) HTRFlor [3]

Figure 9. Comparison of the three architectural designs used for text recognition.

0 10 20 30 40 50 60 70 80 90
0

25k

50k

75k

100k

Confidence γ6 > x

N
um

be
ro

fs
am

pl
es HTRFlor

PyLaia
Retsinas

Figure 10. Number of training samples used for finetuning for different thresholds.

12

	Introduction
	Related Work
	Alignment in computer vision
	Alignment for historical manuscripts

	Methodology
	Bullinger Dataset
	Handwritten Text Recognition
	CTC Alignment
	Self-Training

	Evaluation
	Setup
	Metrics

	Results
	Baseline Results for Bullinger
	Text Alignment
	Computational Analysis
	Self-Training
	Weakly Trained Model
	Model size

	Conclusion
	Model architectures
	PyLaia model architectures
	Subset size for finetuning

